首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
    
The kinetics of polymerization of acrylic acid (AA) and methacrylamide (MAM) initiated by the redox system Mn3+ -ethoxyacetic acid (EAA) in aqueous sulphuric acid was studied at 35°C. The polymerization of both the monomers followed the same mechanism, viz., initiation by the primary radical arising from the oxidation of EAA and termination by the Mn3+ ion. The rate coefficientsk i /k 0 andk p /k i were correlated to monomer and polymer radical reactivities, respectively. Acrylic acid was found to have higher monomer and polymer radical reactivities than methacrylamide.  相似文献   

2.
The kinetics of polymerization of acrylamide (AM) initiated by manganese(III) acetate–ethoxyacetic acid (EAA) redox system in aqueous sulphuric acid was investigated in the temperature range 35–45°C. The effects of variations in [monomer], [Mn3+], [EAA], [H+], and ionic strength on the rates of monomer disappearance (Rp) and Mn3+ disappearance (?Rm) were studied. The polymerization process is initiated by the free radical arising from the oxidation of ethoxyacetic acid by Mn3+ and terminated by the mutual combination of growing polymer radicals. Based on the kinetic results, a suitable reaction scheme is proposed and the rate expressions are derived. The study on degree of polymerization supports the proposed scheme for polymerization. The various rate and thermodynamic parameters are evaluated.  相似文献   

3.
The aqueous polymerization of acrylic acid and acrylamide initiated by peroxydiphosphate–sodium thiosulfate redox system was investigated within the temperature range of 25–35°C. The rates of polymerization were measured at different concentrations of oxidant, activator and monomer. The monomer and the initiator exponents were evaluated to be 1.12 and 0.51. The rate of polymerization decreases with increasing thiosulfate concentration. On the basis of the experimental observation of the dependence of the rate of polymerization, Rp, on various variables, a suitable kinetic scheme has been proposed and the rate parameters have been evaluated.  相似文献   

4.
The polymerization of acrylonitrile initiated by an ascorbic acid–peroxodisulfate redox system was studied in an aqueous solution at 35°C in the presence of air. Molecular oxygen was found to have no effect on the polymerization reaction. An increase in ionic strength slightly increased the rate. The overall rate of polymerization, Rp, showed a square dependence on [monomer] and a half-order dependence on [peroxodisulfate]. A first-order dependence on [ascorbic acid] at low concentrations (<3.0 × 10?3 mol L?1) followed by a decrease in Rp at higher concentrations of ascorbic acid (>3.0 × 10?3 mol L?1) was also noted. Rp remained unchanged up to 40°C and showed a decline thereafter. Addition of catalytic amounts of cupric ions decreased the rate whereas ferric ions were found to increase the rate. Added sulfuric acid in the range (6.0?50.0) × 10?5 mol L?1 decreased the Rp.  相似文献   

5.
The polymerization of N-vinylcarbazole (VCZ) initiated by sodium chloroaurate (NaAuCl4·2H2O) in nitrobenzene was studied at 30°C. The rate of polymerization (Rp) is proportional to [AuIII] [VCZ] after a short induction period. When reducing agents (ascorbic acid, ferrocene, or mercury metal) are added to the system, the rate of polymerization in the dark increases. The Rp is relatively unaffected by addition of water and N-ethylcarbazole, but the polymerization is completely inhibited in the presence of ammonia. Oxygen and DPPH act as neither inhibitors nor retarders. Kinetic treatments based on the assumption that the active initiating species is AuII produced by reduction of AuIII by VCZ and other reducing agents explain the experimental results very well.  相似文献   

6.
A kinetic study of the thermal polymerization of acrylonitrile initiated by chromic acid–reducing agent (n-butanol, ethylene glycol, cyclohexanone, and acetaldehyde) systems was made. Chromic acid alone did not initiate polymerization under deaerated or undeaerated conditions. On the basis of the experimental determination of the dependencies of various variables on the rate of polymerization Rp, the rate of chromium (VI) disappearance ?RM, the degree of polymerization DP, etc., a reasonable kinetic scheme was arrived at. The mechanism with the reducing agents, n-butanol, cyclohexanone, and ethylene glycol, was found to be similar but different from that with acetaldehyde. Evidence has been presented to prove the formation of radical intermediates formed by the oxidation of the reducing agent by Cr(IV). Rate parameters for oxidation of the reducing agent and polymerization of the monomer were evaluated.  相似文献   

7.
Vinyl polymerization of acrylonitrile initiated by the Ce(IV)/thioacetamide redox system has been investigated in aqueous sulfuric acid in the temperature range of 10–20°C. The rate of polymerization (Rp) and the rate of Ce(IV) disappearance (?RCe) were measured. The effect of certain water-soluble organic solvents, added electrolytes, and aromatic and heterocyclic organic nitrogen compounds on the rate of polymerization has been investigated. Depending on the experimental results, we have suggested a suitable reaction scheme for the system which involves the production of initiating radicals from the oxidation of thioacetamide (TAm) by ceric ion and the termination of the polymer chain by metal ions.  相似文献   

8.
The kinetics of thermal polymerization of methyl methacrylate initiated by the redox system Mn(III)–glycerol was studied in aqueous sulfuric acid in the temperature range of 30–40°C, and the rates of polymerization, Rp, and Mn3+ disappearance, etc., were measured. The effect of certain water-miscible organic solvents and certain cationic and anionic surfactants on the rates of polymerization has been investigated. A mechanism involving the formation of a complex between Mn3+ and glycerol whose decomposition yields the initiating free radical with the polymerization being terminated by the metal ion has been suggested.  相似文献   

9.
The polymerization of acrylonitrile (AN) initiated by the system of tetramethyl tetrazene (TMT) and bromoacetic acid (BA) in dimethylformamide (DMF) was studied. The TMT–BA system could initiate the polymerization of AN more easily than TMT alone. The polymerization was confirmed to proceed through a radical mechanism. The initial rate of polymerization Rp was expressed by the equation: Rp = [TMT]0.62-[BA]0.5[AN]1.5. The overall activation energy for the polymerization was estimated as 9.4 kcal/mole. In the absence of monomer, the reaction of TMT with BA in DMF was also studied kinetically by measuring the evolution of nitrogen gas. The reaction was first-order in TMT and first-order in BA; the rate data at 49°C were k2 = 9.1 × 10?2l./mole-sec., ΔH? = 17.0 kcal/mole, and ΔS? = ? 6.6 eu. In addition, the treatment of TMT with BA in benzene led to the formation of tetramethylhydrazine radical cation, which was identified by its ESR spectrum. On the other hand, the relatively strong interaction between TMT and DMF was observed by absorption spectrophotometry.  相似文献   

10.
Aliphatic tertiary amino-group N-substituted acrylamides, N-acryl-N′-methylpiperazine (AMP)and N-methacryl-N′-methylpiperazine (MAMP) were synthesized directly from N-methylpiperazinewith corresponding acryloyl chlorides and characterized by elementary analysis of their picrates,~1H-NMR, IR and MS. AMP did not polymerize with benzoyl peroxide (BPO), but could poly-merize with lauroyl peroxide (LPO). The rate equation of the polymerization was given as R_P=K_P [AMP]~(1.5)[LPO]~(0.5) and the overall activation energy of this polymerization system was 10.8Kcal/mol. The redox nature of LPO with the monomer itself was suggested. Even though AMP and MAMP hardly proceed the polymerization initiated with BPO, butunder lower concentration would form redox system with BPO to initiate the polymerization of MMAreadily. The rate equation of the polymerization of MMA initiated with MAMP-BPO systemwas given as R_P=K_P [MMA] [MAMP}~(0.5) [BPO]~(0.5) and the overall activation energy was 10.2Kcal/mol. The analysis of the obtained polymers confirmed that MAMP not only initiated the poly-merization of MMA by combining with BPO, but also took part in the polymer chains impartingthem with better biocompatibility.  相似文献   

11.
This article reports the polymerization kinetics of acrylonitrile initiated by metallic magnesiumnitric acid system. The rate of polymerization is independent of the amount of magnesium used; when the concentration of nitric acid is higher than acrylonitrile, the equation of polymerization kinetics may be expressed asR_p =1.91×10~5e~(-15000)/RT[Mg]~0 [AN]~(2.2) [HNO_3]~(0.45)The result of copolymerization of acyrlonitrile and methyl acrylate supports a free-radical mechanism.  相似文献   

12.
Summary : The n‐hexylamine‐initiated polymerization of Nε‐trifluoroacetyl‐L ‐lysine N‐carboxyanhydride in N,N‐dimethyformamide was studied by nonaqueous capillary electrophoresis. A polypeptide with a broad molecular weight distribution was obtained and side reactions were clearly identified for polymerization at room temperature. The possibility of living polymerization at 0 °C was demonstrated.

Synthesis of living polypeptides by primary amine initiated polymerization of NCA at low temperatures.  相似文献   


13.
The polymerization of ?‐caprolactone initiated by two catalyst systems was studied: (1) carbazole‐potassium in the presence of 18‐crown‐6 ether and (2) NdCl3/TBP/TIBA (neodymiumtrichloride/tri‐n‐butyl‐phosphate/triisobutylaluminium) at the molar ratio 1/3/1. For both initiator systems conversion/time plots were determined and the polymers were characterized by IR, GPC and by 1H‐ and 13C?NMR spectroscopy. Polyesters with the highest molecular weight (M n?44 000 g/mol) were obtained for the polymerizations initiated by the carbazole‐potassium/18‐crown‐6 ether system. The features of the polymerization initiated by the carbazole‐potassium/18‐crown‐6 ether system are discussed on the basis of a simple scheme. The nature of this polymerization is non‐living. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The polymerizations of isobutylene initiated with the system tert-butyl chloride (t-BuCl)/SnCl4 and carried out in CH2Cl2 at −20°C and −78°C were investigated. The results obtained demonstrate that the presence of t-BuCl in the polymerizing system gives rise to a PIB product with a distinctly bimodal MWD. The higher-molecular weight (HMW) PIB, n = 20000, I=w/M̄n ∼ 2.5, is the result of existence of the protogenic initiation with residual water in the reaction system. The lower-molecular weight (LMW) PIB, n < 600, w/M̄n ≤ 1.4, is the product of polymerization initiated presumably with a complex t-BuCl-SnCl4-H2O. To elucidate the reaction mechanism of the polymerization initiated with the complex, a series of similar isobutylene polymerizations using the initiation system 2,5-dichloro-2,5-dimethylhexane (DDH)/SnCl4 was run and the oily LMW PIB samples were investigated by 1H-NMR. A new polymerization mechanism describing the role of DDH and t-BuCl is suggested.  相似文献   

15.
Kinetics of the living cationic polymerization of isobutylene, initiated by the system t-bu-m-DCC/TiCl4/2,4-dimethylpyridine (2,4-DMP), were studied as a function of concentration of the various components of the initiation system, solvent polarity, and presence of the protic acid scavenger, 2,6-di-tert-butylpyridine (DTBP). Under a variety of conditions, the effective number of growing chains in a given polymerization remained constant and Mn increased linearly with monomer conversion. The system was found to yield an essentially homogeneous reaction mixture in hexanes/methyl chloride cosolvents, with only a small amount of precipitate, probably 2,4-dimethylpyridinium salts resulting from proton scavenging by the tertiary amine. It was found that increasing [TiCl4] strongly increased the rate while increasing [2,4-DMP] weakly decreased the rate. Evidence of a retardation of the polymerization rate by the soluble TiCl4:2,4-DMP complex was observed. The addition of DTBP as a protic acid scavenger, with or without 2,4-DMP, very weakly decreased the rate of polymerization. Increasing the fraction of methyl chloride in the solvent mixture caused an increase in the rate of polymerization. All of the results were consistent with a propagation mechanism in which an equilibrium exists between dormant and ionized, active chain ends.  相似文献   

16.
The kinetics and mechanism of polymerization of methacrylic acid (MAA) and ethyl acrylate (EA) initiated by the redox system, Mn3+–thiodiglycolic acid (TDGA) were investigated in the 15–35°C temperature range. The polymerization kinetics of both the monomers followed the same mechanism, viz., initiation by primary radical and termination by Mn3+–thiodiglycolic acid complex. The rate coefficients ki/k0 and kp/kt were related to the monomer reactivity and polymer radical reactivity, respectively. It was observed that both monomer reactivity and polymer radical reactivity followed the same order, viz., EA > MAA. The polymer radical reactivity varied inversely with the Q values of the monomers.  相似文献   

17.
The kinetics of polymerization of acrylonitrile initiated by Cr(VI)–thiourea and Cr(VI)–ethylene thiourea have been studied at 35, 40, and 45°C in nitrogen. The rates of polymerization and of disappearance of Cr(VI) were measured. Chromic acid alone did not initiate the polymerization under deaerated and undeaerated conditions. On the basis of the experimental observation of the dependence of the rate of polymerization Rp, the rate of Cr(VI) disappearance, –Rm, etc., on various variables, a suitable kinetic scheme was proposed and various rate and energy parameters were evaluated.  相似文献   

18.
The effects of triphenyl phosphite (TPP) on the radical polymerization of styrene (St) and methyl methacrylate (MMA) initiated with α,α,-azobisisobutyronitrile (AIBN) was investigated at 50°C. The rate of polymerization of St and MMA at a constant concentration of TPP was found to be proportional to the monomer concentration and the square root of the initiator concentration. The rate of polymerization and the degree of polymerization of both St and MMA increased with increasing TPP concentration. The accelerating effect was shown to be due to the decrease of the termination rate constant kt with an increase in the viscosity of the polymerization systems. The chain transfer constant Ctr of TPP in St and MMA systems was determined from the degree of polymerization system. The Ctr of TPP was almost zero in the St system and 6.5 × 10?5 in the MMA system.  相似文献   

19.
The kinetics of polymerization of acrylic acid initiated by Cr6+-thiourea, Cr6+-thioacetamide, Cr6+-2-aminoethane thiol, Cr6+-cysteine, and Cr6+-thioglycollic acid have been studied at 30, 35, and 40°C in nitrogen. The rates of polymerization were measured. Chromic acid alone did not initiate the polymerization under deaerated and un-deaerated conditions. On the basis of the experimental observation of the dependence of the rate of polymerization Rp on various variables, a suitable kinetic scheme is proposed.  相似文献   

20.
The polymerization of vinyl monomer initiated by polyethyleneglycol (PEG) in aqueous solution was carried out at 85°C with shaking. Acrylonitrile (AN), methyl methacrylate (MMA), and methacrylic acid were polymerized by PEG–300 (M?n = 300), whereas styrene was not. The effects of the amounts of monomer and PEG, the molecular weight of PEG, and the hydrophobic group at the end of PEG molecule on the polymerization were studied. The selectivity of vinyl monomer and the effect of the hydrophobic group are discussed according to “the concept of hard and soft hydrophobic areas and monomers.” The kinetics of the polymerization was investigated. The overall activation energy in the polymerization of AN was estimated as 37.9 kJ mol?1. The polymerization was effected by a radical mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号