首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymers based on poly(thylene oxide) (PEO) are a very promising new type of stable electrolytes for lithium rechargeable batteries. Their relatively low ionic conductivities can be more than compensated by the very small electrolyte thicknesses that can be used. Specific energies of 100 Wh/kg at sustained specific powers of 70 W/kg, have been obtained at Hydro-Québec with 100 μm of PEO electrolyte at 100°C. In an electric vehicle, this would give a driving range of over 300 km at 80 km/h, more than three times as much as lead-acid batteries. PEO-related polymers have been developed for lower temperature applications such as computers or portable appliances. Advantages over competitive Ni-Cd batteries are higher energy densities and absence of self-discharge, with expected shell lifes of 10 years. Laboratory prototypes (3600 cm2, 10 Wh) demonstrate the absence of scale-up effects and excellent cycling capability (over 300 charge-discharge cycles).  相似文献   

2.
The present work describes the synthesis and characterization of gel polymer electrolytes containing methanesulfonic acid (MSA) with Polyacrylamide (PAAm). The PAAm–MSA gel electrolytes were prepared with different concentrations of MSA. Addition of 0.5 M of MSA into the electrolyte increased the ionic conductivity of PAAm from 1.35 × 10?3 to 1.56 × 10?2 S cm?1. The maximum ionic conductivity of 7.0 × 10?1 S cm?1 was obtained with 3 M MSA at room temperature. The chemical interaction between PAAm and MSA was studied by Fourier transformed infra-red. The performance as a polymer electrolyte was evaluated from the cell discharge and open circuit potential measurements of a tin-air cell. The tin-air cell supported relatively high current, up to 12 mA cm?2 with a maximum power density of 5 mW cm?2. The open-circuit potential of the cell was 1.27 V for 24 h.  相似文献   

3.
We report remarkably high energy conversion efficiency (4.5% at 100 mW cm(-2)) of a dye-sensitized solar cell in the solid state, using composite polymer electrolytes containing fumed silica nanoparticles.  相似文献   

4.
The development of polymer gel electrolyte system with high ionic conductivity is the main objective of polymer research. Electrochemical devices based on lithium ion-conducting polymer electrolyte are not safe due to the explosive nature of lithium. An attempt has been made to synthesize magnesium ion-conducting polymeric gel electrolytes, poly (vinylidene fluoride-co-hexafluoropropylene)–propylene carbonate–magnesium perchlorate, PVdF(HFP)-PC–Mg(ClO4)2 using standard solution-cast techniques. The maximum room temperature ionic conductivity of the synthesized electrolyte system has been observed to be 5.0 × 10−3 S cm−1, which is quite acceptable from a device fabrication point of view. The temperature-dependent conductivity and the dielectric behavior were also analyzed. The pattern of the temperature-dependent conductivity shows the Arrhenius behavior. The dielectric constant ε r and dielectric loss ε i increases with temperature in the low-frequency region but almost negligible in the high-frequency region. This behavior can be explained on the basis of electrode polarization effects. The real part M r and imaginary part M i versus frequency indicate that the systems are predominantly ionic conductors. Further, the synthesized electrolyte materials have been checked for its suitability in energy storage devices namely redox supercapacitor with conducting polymer polypyrrole as electrode materials, and finally, it was observed that it shows good capacitive behavior in low-frequency region. Preliminary studies show that the overall capacitance of 22 mF cm−2 which is equivalent to a single electrode specific capacitance of 117 F gm−1 was observed for the above said supercapacitors.  相似文献   

5.
Journal of Solid State Electrochemistry - We report the studies on composite gel polymer electrolytes (GPEs) comprising 0.5 M solution of sodium trifluoromethane sulfonate (Na-triflate or...  相似文献   

6.
A proton-conducting nanocomposite gel polymer electrolyte (GPE) system, [35{(25 poly(methylmethacrylate) (PMMA) + 75 poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP))?+?xSiO2}?+?65{1 M NH4SCN in ethylene carbonate (EC) + propylene carbonate (PC)}], where x?=?0, 1, 2, 4, 6, 8, 10, and 12, has been reported. The free standing films of the gel electrolyte are obtained by solution cast technique. Films exhibit an amorphous and porous structure as observed from X-ray diffractometry (XRD) and scanning electron microscopy (SEM) studies. Fourier transform infrared spectrophotometry (FTIR) studies indicate ion–filler–polymer interactions in the nanocomposite blend GPE. The room temperature ionic conductivity of the gel electrolyte has been measured with different silica concentrations. The maximum ionic conductivity at room temperature has been observed as 4.3?×?10?3?S?cm?1 with 2 wt.% of SiO2 dispersion. The temperature dependence of ionic conductivity shows a typical Vogel-Tamman-Fulcher (VTF) behavior. The electrochemical potential window of the nanocomposite GPE film has been observed between ?1.6 V and 1.6 V. The optimized composition of the gel electrolyte has been used to fabricate a proton battery with Zn/ZnSO4·7H2O anode and PbO2/V2O5 cathode. The open circuit voltage (OCV) of the battery has been obtained as 1.55 V. The highest energy density of the cell has been obtained as 6.11 Wh?kg?1 for low current drain. The battery shows rechargeability up to 3 cycles and thereafter, its discharge capacity fades away substantially.  相似文献   

7.
Journal of Solid State Electrochemistry - In this paper, we report the effect of ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIMFSI) on polymer poly(ethylene oxide) (PEO)...  相似文献   

8.
The nonaqueous rechargeable lithium-O(2) battery containing an alkyl carbonate electrolyte discharges by formation of C(3)H(6)(OCO(2)Li)(2), Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li, CO(2), and H(2)O at the cathode, due to electrolyte decomposition. Charging involves oxidation of C(3)H(6)(OCO(2)Li)(2), Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li accompanied by CO(2) and H(2)O evolution. Mechanisms are proposed for the reactions on discharge and charge. The different pathways for discharge and charge are consistent with the widely observed voltage gap in Li-O(2) cells. Oxidation of C(3)H(6)(OCO(2)Li)(2) involves terminal carbonate groups leaving behind the OC(3)H(6)O moiety that reacts to form a thick gel on the Li anode. Li(2)CO(3), HCO(2)Li, CH(3)CO(2)Li, and C(3)H(6)(OCO(2)Li)(2) accumulate in the cathode on cycling correlating with capacity fading and cell failure. The latter is compounded by continuous consumption of the electrolyte on each discharge.  相似文献   

9.
Composite polymer electrolyte membranes composed of poly(ethylene oxide) (PEO), poly(vinylidene fluoride-hexafluoropropylene) {P(VdF-HFP)} blends, dedoped (insulating) polyaniline (PAni) nanofibers, and LiClO4 as salt have been synthesized with varying fraction of dedoped PAni nanofibers (from 2 to 10 wt.%). The ionic conductivity of PEO–P(VdF-HFP)–LiClO4 electrolyte system increases with increase in the fraction of dedoped polyaniline nanofibers. This could be attributed to the incorporation of nanofibers (aspect ratio >50), which may provide high ion conducting path along the interface due to Lewis acid–base interactions between Li+ ions and lone pair of electrons of nitrogen atom of polyaniline. However, at higher fraction (>6 wt.%), the nanofibers get phase separated from the polymer matrix and form domain-like structures, which may act as physical barrier to the conduction of Li+ ions resulting in decreased ionic conductivity. Electrochemical potential window and interfacial stability of nanofibers dispersed polymer electrolyte membranes are also better than that of nanofibers free membranes.  相似文献   

10.
Journal of Solid State Electrochemistry - From the perspective of future development trend, energy issues will always accompany with the human development process. The development of new batteries...  相似文献   

11.
Review on gel polymer electrolytes for lithium batteries   总被引:1,自引:0,他引:1  
This paper reviews the state-of-art of polymer electrolytes in view of their electrochemical and physical properties for the applications in lithium batteries. This review mainly encompasses on five polymer hosts namely poly(ethylene oxide) (PEO), poly(acrylonitrile) (PAN), poly(methyl methacrylate) (PMMA), poly(vinylidene fluoride) (PVdF) and poly(vinylidene fluoride-hexafluoro propylene) (PVdF-HFP) as electrolytes. Also the ionic conductivity, morphology, porosity and cycling behavior of PVdF-HFP membranes prepared by phase inversion technique with different non-solvents have been presented. The cycling behavior of LiMn2O4/polymer electrolyte (PE)/Li cells is also described.  相似文献   

12.
Li  Libo  Xie  Ming  Zhang  Yonghong  Xu  Yanping  Li  Jia  Shan  Yuhang  Zhao  Yangmingyue  Zhou  Da  Chen  Xiaochuan  Cui  Wenjun 《Journal of Solid State Electrochemistry》2021,25(7):2021-2032
Journal of Solid State Electrochemistry - This work obtained gel polymer electrolytes (GPEs) via in situ polymerization of methyl methacrylate (MMA) in the environment of lithium...  相似文献   

13.
The development of applicable electrolytes is the key point for high-performance rechargeable magnesium batteries (RMBs).The use of liquid electrolyte is prone ...  相似文献   

14.
Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced safety and energy density,the investigation on the electrolytes has leaped form liquid organic electrolytes to solid polymer ones.However,such solid-state Li-S battery system is greatly limited by unfavorable ionic conductivity,poor interfacial contact and narrow electrochemical windows on account of the absence of any liquid components.To address these issues,gel polymer electrolytes(GPEs),the incorporation of liquid electrolytes into solid polymer matrixes,have been newly developed.Although the excellent ionic transport and low interfacial resistance provided by GPEs have prompted numerous researchers to make certain progress on high-performance Li-S coins,a comprehensive review on GPEs for Li-S batteries remains vacant.Herein,this review focuses on recent development and progress on GPEs in view of their physical and chemical properties for the applications in Li-S batteries.Studies on the components including solid hosts,liquid solutions and fillers of GPEs are systematically summarized with particular emphasis on the relationship between components and performance.Finally,current challenges and directional outlook for fabricating GPEs-based Li-S batteries with outstanding performance are outlined.  相似文献   

15.
Owing to their improved mechanical properties and good polymer miscibility, the blend gel polymer electrolytes of poly (vinylidene fluoride) (PVdF)-poly(ethyl methacrylate) (PEMA) have been prepared using solvent casting technique and characterized for their electrochemical performances. The electrolyte shows a maximum ionic conductivity of 1.5 × 10−4 S cm−1 at 301 K for the 90:10 blend ratio of PVdF:PEMA system with good transport property. The ionic conductivity is enhanced, in accompany with improved microstructural homogeneity, at low PEMA contents, while the decreased conductivity at high contents has been attributed to increasing crystalline PEMA domains. With the optimum PVdF:PEMA ratio, the complex system was found to facile reasonable ionic transference number and exhibit superior interfacial stability with Li electrode.  相似文献   

16.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   

17.
Electrical conductivity of polymer gel electrolytes containing different hydroxy substituted benzoic acids and polyvinylidenefluoride-hexafluoropropylene (PVdF-HFP) has been studied. The conductivity of solution and gel electrolytes shows ortho effect and has been found to depend upon the acidity constant of the acid used and varies as σ (ortho-) > σ (meta-) > σ (para-). The addition of PVdF-HFP to solution electrolytes results in an increase in conductivity and the conductivity of gel electrolytes has been found to be higher than that of the corresponding liquid electrolytes for all the three acids studied i.e. σ (gel) >σ (liquid). The increase in conductivity with polymer addition has also been found to depend upon the acid concentration.  相似文献   

18.
Wang  Wen-He  Su  Wei  Hu  Shao-Yu  Huang  Yan  Pan  Yong  Chang  Shun-Chieh  Shu  Chi-Min 《Journal of Thermal Analysis and Calorimetry》2022,147(21):12019-12032
Journal of Thermal Analysis and Calorimetry - Polymethylmethacrylate (PMMA) is a common polymer electrolyte matrix material whose pyrolysis characteristics are vital factors affecting the...  相似文献   

19.
A novel polymer matrix with a polar carbonyl group was designed and used to prepare an all‐solid polymer electrolyte in lithium rechargeable batteries. The ionic conductivity of this type of polymer electrolyte was examined. The relationship between the lithium salt concentration and ionic conductivity was investigated by Fourier transform infrared (FTIR) spectroscopy. The carbonyl groups in the polymer matrix effectively interacted with the lithium salt, which improved the ionic conductivity at a large range of temperatures. The ionic conductivity of this type of polymer electrolyte was approximately 10?4 S cm?1 at room temperature. The stability of the interface between electrode and electrolyte was evaluated by measuring the alternating current (AC) impedance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号