首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
马伟  孙登明 《分析化学》2007,35(1):66-70
用循环伏安法制备了聚L-精氨酸修饰玻碳电极,研究了多巴胺和肾上腺素在修饰电极上的电化学行为,建立了同时测定多巴胺和肾上腺素的新方法。在pH7.5的磷酸盐缓冲溶液中,多巴胺在修饰电极上产生一对氧化还原峰,峰电位分别为0.276V和0.059V;肾上腺素在修饰电极上产生3个氧化峰和一个还原峰,峰电位分别为0.262V、0.121V、-0.126V和-0.316V(对Ag/AgCl电极)。多巴胺和肾上腺素同时存在时ΔEpc=375mV,用还原峰对多巴胺和肾上腺素同时测定的线性范围分别为8.0×10-7~5.0×10-4mol/L和5.0×10-7~5.0×10-5mol/L;检出限分别为3.0×10-7mol/L和1.0×10-7mol/L。大量的抗坏血酸和尿酸不干扰测定,用于人尿液中多巴胺和肾上腺素样品的同时测定,结果满意。  相似文献   

2.
用循环伏安法制备银掺杂聚L-酪氨酸修饰玻碳电极,研究了多巴胺、肾上腺素和抗坏血酸在其电极上的电化学行为,建立了同时测定多巴胺、肾上腺素和抗坏血酸的新方法。当3种组分共存时,在磷酸盐缓冲溶液(pH6.0)中,扫描速率为140mV/s,多巴胺和肾上腺素在修饰电极上分别产生还原峰,峰电位分别为0.198和-0.205V,多巴胺和肾上腺素氧化峰重叠,峰电位为0.313V(vs.Ag/AgCl);抗坏血酸产生一个氧化峰,峰电位0.108V(vs.Ag/AgCl)。多巴胺和肾上腺素的ΔEpc=0.403V,抗坏血酸的氧化峰与多巴胺和肾上腺素的ΔEpa=0.205V,用还原峰和氧化峰可同时测定多巴胺、肾上腺素和抗坏血酸,3种组分同时测定的线性范围分别为5.0×10-6~1.0×10-4mol/L,8.0×10-6~1.0×10-4mol/L和3.0×10-5~1.0×10-3mol/L;检出限分别为5.0×10-7,8.0×10-7和5.0×10-6mol/L。本方法用于人尿液中多巴胺、肾上腺素和抗坏血酸的同时测定,结果满意。  相似文献   

3.
用Nafion和亲水性离子液体溴化1-辛基-3-甲基咪唑([OMIM]Br)作修饰剂制作了Nafion-离子液体-修饰碳糊电极;在0.1 mol/L磷酸盐缓冲溶液(pH 7.40)中,用循环伏安法(CV)和方波伏安法(SWV)研究了多巴胺在该修饰电极上的电化学行为,建立了抗坏血酸和尿酸存在下选择性测定多巴胺的新方法.研究表明,该修饰电极降低了多巴胺氧化、还原反应的过电位,增大了其氧化、还原反应的峰电流,而抗坏血酸和尿酸在该修饰电极上无响应;在方波伏安曲线上,多巴胺的氧化电流与其浓度在3.0×10-8~2.0×10-6 mol/L范围内呈线性关系,检出限为1.0×10-8 mol/L.该法可用于注射液和模拟生物样品中多巴胺的测定.  相似文献   

4.
采用Hummers法制备了纳米石墨烯,并将该纳米材料分散在蒸馏水中得到悬浮液,取5μL的悬浮液滴涂在玻碳电极表面,制备石墨烯修饰电极。用循环伏安法研究了在pH 4.0磷酸盐电解质中,在-0.4~0.8V(vs.Ag/AgCl)电位范围内,抗坏血酸在修饰电极上的电化学行为。结果表明:抗坏血酸在修饰电极上在0.173V处可见明显的氧化峰,且氧化峰电流显著高于在裸玻碳电极上的氧化峰电流;并可有效排除肾上腺素、尿酸、多巴胺等物质的干扰。据此提出了用循环伏安法测定抗坏血酸的方法。抗坏血酸的线性范围为8.00×10-6~1.0×10-3 mol.L-1,检出限(3S/N)为1.0×10-7 mol.L-1。方法用于维生素C片的分析,回收率在96.3%~104.4%之间。  相似文献   

5.
用电聚合法制备了聚L-组氨酸修饰碳黑微电极,研究了多巴胺在该修饰电极上的电化学行为。实验表明:该修饰电极对神经递质多巴胺的电化学氧化有显著的催化作用,采用二次导数线性扫描伏安法对多巴胺进行测定,在pH 7.0的磷酸盐缓冲溶液中,多巴胺在0.15 V处产生一灵敏的氧化峰,多巴胺的氧化峰电流与浓度在4.0×10-8~1.0×10-4mol/L范围内呈线性关系,检出限(3σ)为1.0×10-8mol/L。该聚合物修饰电极具有良好的选择性,能有效地排除抗坏血酸对测定的影响,用于人工合成样品的分析。  相似文献   

6.
在抗坏血酸存在下用L-赖氨酸修饰玻碳电极测定多巴胺   总被引:3,自引:0,他引:3  
黄燕生  陈静  许兵  邵会波 《化学通报》2006,69(9):656-660
采用电化学氧化法制备了L-广赖氮酸单分子层修饰玻碳电极,研究了多巴胺(DA)和抗坏血酸(AA)在该电极上的电化学行为。结果表明,L-广赖氨酸单分子层修饰玻碳电极不仅能改善多巴胺和抗坏血酸的电化学行为,而且能将多巴胺和抗坏血酸二者在裸电极上的完全重叠的单氧化峰分开成为两个完全独立的氧化峰,循环伏安(CV)图上峰间距为507mV,差分脉冲伏安(DPV)图上峰间距为460mV,由此可实现在AA的共存下对样品中的DA进行选择性测定。  相似文献   

7.
过循环伏安制备了聚对羟基苯甲酸修饰的玻碳电极。考察了该电极对抗坏血酸的电催化性能。结果显示,聚对羟基苯甲酸修饰玻碳电极对抗坏血酸有很好的电催化作用。在修饰后的电极上产生的峰电流比修饰前的电极产生的峰电流大4倍,氧化峰电位负移189 mV。其氧化峰电流与抗坏血酸浓度在2.6×10-5~3.68 ×10-4mol/L范围内呈线性关系,相关性系数为0.9984,检测限为5×10-6 mol/L(S /N = 3)。在AA与UA共存的体系中,能排除多巴胺对抗坏血酸测定的干扰。  相似文献   

8.
采用电化学方法先在玻碳电极(GCE)表面共价键合一末端带有巯基的2-氨基乙硫醇(AET)单层,通过硫-金相互作用将金纳米颗粒(GNP)固载在玻碳电极表面,制备了GNP修饰的GNP-AET/GCE电极.采用X射线光电子能谱和循环伏安法对固载纳米金的玻碳电极的结构和性能进行表征.研究发现:GNP-AET/GCE电极不仅对抗坏血酸具有良好的催化性能,使其氧化过电位由玻碳电极上的0.53V负移到0.33V,氧化峰电流明显增加,而且能将多巴胺和抗坏血酸在玻碳电极上重叠的氧化波分成两个独立的氧化峰,峰间电位差为0.29V,提出了用差分脉冲伏安法在多巴胺共存在测定抗坏血酸的选择性方法.峰电流与抗坏血酸浓度在8.5×10-6~1.0×10-4 mol·L-1之间呈线性关系,其检出限为4.7×10-6 mol·L-1.  相似文献   

9.
通过循环伏安(CV)制备了聚对羟基苯甲酸(poly-PHB)修饰的玻碳电极. 考察了电极对抗坏血酸(AA)电氧化的催化性能. 结果显示,聚对羟基苯甲酸修饰玻碳电极对AA氧化有很好的电催化作用. 在修饰电极上产生的峰电流比在未修饰电极上产生的氧化峰电流大4倍,氧化峰电位负移205 mV. 氧化峰电流与AA浓度在2.6×10-5~3.68 ×10-4 mol/L范围内呈线性关系,相关系数为0.998 4,检测限为5×10-6 mol/L(S/N=3). 在AA与多巴胺(DA)共存的体系中,能排除DA对抗坏血酸测定的干扰.  相似文献   

10.
采用共沉淀法制备了PEG修饰的Fe3O4纳米粒子,用十二烷基苯磺酸钠(SDBS)水溶液将其分散后修饰在装有磁铁的碳糊电极表面,制成SDBS-PEG-Fe3O4磁性电极。循环伏安(CV)测定结果表明,该修饰电极对多巴胺(DA)有良好的电催化作用,DA的氧化峰电流相当于裸电极的5倍,氧化峰和还原峰的电位差从0.221 V减小到0.044 V,可逆性得到了提高。采用方波伏安法测定DA,其氧化峰电流与浓度分别在5.0×10-7~2.0×10-5mol/L和2.0×10-5~1.0×10-4mol/L范围内呈线性关系,r2分别为0.996 2和0.976 2;检出限(S/N=3)达1.4×10-7mol/L。该修饰电极可基本消除抗坏血酸(AA)和尿酸(UA)等共存物质对DA测定的干扰,用于盐酸多巴胺注射液样品的测定,结果令人满意。  相似文献   

11.
用修饰电极导数伏安法同时测定多巴胺和肾上腺素   总被引:13,自引:1,他引:12  
研究了2,6-吡啶二甲酸在玻碳电极上电化学聚合的实验条件及修饰电极的电化学特性,发现该聚合物膜修饰电极对多巴胺和肾上腺素的电化学氧化有显著的催化作用,而对抗坏血酸等阴离子没有响应。利用在修饰电极上循环伏安阴极过程多巴胺和肾上腺素的峰电位不同,采用阴极化导数伏安法可同时测定多巴胺和肾上腺素。  相似文献   

12.
研究了聚磺基水杨酸/多壁碳纳米管修饰玻碳电极的制备及多巴胺在此修饰电极上的电化学行为, 讨论了修饰条件、扫速、溶液 pH 以及抗坏血酸的干扰对多巴胺在这种复合物电极上响应的影响. 在 pH 7.4 磷酸盐缓冲溶液中, 在1.0×10-3 mol/L 抗坏血酸共存的条件下, 多巴胺氧化峰电流与其浓度在 5×10-7~10-4 mol/L 范围内分段呈线性关系, 检出限为 1.0×10-7 mol/L. 结果表明: 聚磺基水杨酸/多壁碳纳米管修饰电极结合了多壁碳纳米管灵敏度高和聚磺基水杨酸选择性好的优点, 可用于抗坏血酸共存条件下多巴胺的测定.  相似文献   

13.
采用电化学方法将钙羧酸(CCA)聚合修饰在玻碳电极(GCE)表面制备了聚钙羧酸指示剂修饰玻碳电极(PCCA/GCE),并用循环伏安法和交流阻抗法研究了电极的电化学性能。结果表明:在pH 6.0的磷酸盐缓冲溶液中,多巴胺(DA)和尿酸(UA)在聚钙羧酸修饰电极上的氧化峰得以分开,峰电位差为0.14V,据此提出了聚钙羧酸修饰电极差分脉冲伏安法同时测定多巴胺和尿酸的方法。DA和UA的浓度分别在5.0~43.8μmol.L-1和5.0~50.0μmol.L-1范围内与其氧化峰电流呈线性关系,检出限(3S/N)分别为0.2μmol.L-1和0.5μmol.L-1。方法可用于多巴胺注射液样品中DA和UA的测定,测定值的相对标准偏差(n=5)依次为2.43%和2.35%。  相似文献   

14.
研究了十六烷基三甲基溴化铵(CTMAB)/多壁碳纳米管修饰玻碳电极的制备以及多巴胺和抗坏血酸在该修饰电极上的电化学行为。在CTMAB和多壁碳纳米管的协同作用下,该修饰电极对多巴胺和抗坏血酸均具有显著的催化氧化作用,多巴胺和抗坏血酸的氧化峰电位分别为223mV和15mV,实现了在抗坏血酸共存时测定多巴胺。在pH7.0的磷酸盐缓冲溶液中,多巴胺和抗坏血酸的线性范围分别为2.0×10-6~2.0×10-3mol/L和4.0×10-5~1.0×10-2mol/L,检出限分别为6.0×10-7mol/L和1.0×10-5mol/L。  相似文献   

15.
研究了聚乙撑二氧噻吩修饰电极在水溶液中的电化学行为及对抗坏血酸的电催化作用,实验表明抗坏血酸在聚乙撑二氧噻吩修饰电极上的氧化峰电位为+0.23V,较其在铂电极上的氧化峰电位负移220mV.在1.0×10-1~1.0×10-1mol/L浓度范围内,峰电流和抗坏血酸的浓度有线性关系,可用于水果等样品中抗坏血酸的测定。  相似文献   

16.
在玻碳电极上用电化学方法制备了聚吖啶橙修饰膜电极并研究了此电极上多巴胺的电化学行为及其检测。多巴胺在聚吖啶橙修饰电极上于0.50V和0.47V处出现一对灵敏、可逆的氧化还原峰。在最佳测试条件下,氧化峰电流与多巴胺浓度在2.8×10-7~5.3×10-3mol·L-1范围内呈良好的线性关系。0V处闭路富集150s,检出限为7.0×10-9mol·L-1,用于多巴胺针剂含量的测定,结果满意。  相似文献   

17.
用循环伏安法制备银掺杂聚L-精氨酸修饰玻碳电极(Ag-PA/GCE),研究了芦丁和抗坏血酸在该修饰电极上的电化学行为,建立了芦丁和抗坏血酸同时测定的新方法。在pH=2.5的磷酸盐缓冲溶液(PBS)中,于140mV·s-1的扫速下,芦丁产生一对氧化还原峰,其氧化峰电位为0.552V,还原峰电位为0.491V;抗坏血酸产生一个氧化峰,峰电位为0.281V。芦丁和抗坏血酸的△Epa=0.271V,用氧化峰不需分离可直接对芦丁和抗坏血酸进行同时测定,在最佳条件下,芦丁和抗坏血酸的线性范围分别5.0×10-7~2.0×10-5 mol·L-1和2.5×10-5~5.0×10-3 mol·L-1,检出限分别为1.0×10-7 mol·L-1和1.0×10-5 mol·L-1。方法可用于复方芦丁片中芦丁和抗坏血酸的同时测定。  相似文献   

18.
任旺  张英 《分析试验室》2011,30(6):61-65
用电化学聚合方法制备肉桂酸(CA)修饰的玻碳电极(PCA/GC),研究多巴胺(DA)和抗坏血酸(AA)在修饰电极上的电化学行为.结果表明,在DA和AA共存体系中,DA、AA在PCA/GC电极上氧化峰电流增大且氧化峰电位相差200 mV,据此可同时检测DA和AA.在pH 7.0磷酸盐缓冲液中,DA和AA的氧化峰电流与其浓...  相似文献   

19.
在石墨烯纳米片修饰电极(GN/GCE)上,通过电聚合的方法制备了新颖的桑色素/石墨烯复合修饰电极(M/GN/GCE).以多巴胺(DA)和抗坏血酸(AA)为模型化合物,运用循环伏安法(CV)和差示脉冲伏安法(DPV)考察了该复合修饰电极的电催化行为.在pH 7.0的PBS中,DA和AA分别在0.172 V和-0.183 V产生氧化峰,峰位差达355 mV.与单一修饰电极(桑色素修饰电极(M/GCE)、石墨烯修饰电极(GN/GCE)及裸玻碳电极(GCE))相比,DA在M/GN/GCE上的峰电流显著增大.在优化的实验条件下,DA在2.0×l0-8~5.5×10-4 mol/L浓度范围内与其峰电流具有良好的线性关系,检出限达9.0×10-9 mol/L.  相似文献   

20.
制作了磷钨酸改性蒙脱土修饰电极(PTA-MMT/GCE),研究了该电极对多巴胺(DA)和尿酸(UA)的电化学响应特性.结果表明:在pH 6.5的PBS缓冲溶液中,DA在该电极上出现1对氧化还原峰,是受扩散控制的可逆电化学过程;UA在该修饰电极上0.328 V处出现一明显的氧化峰,电极过程为受扩散控制完全不可逆的过程.计算了DA和UA在该修饰电极上的反应电子数n和扩散系数.通过对比改性前后修饰电极的交流阻抗图,研究了电极表面的特性.用循环伏安法讨论了缓冲溶液、pH值、修饰剂用量、扫描速率及温度对测定的影响.在pH 6.5的PBS溶液中,DA和UA的氧化峰得到了较好地分离,且DA、UA的峰电流强度与浓度分别在2.0~110.0和20.0 ~350.0 μmol·L-1范围内呈良好的线性关系.运用该电极对盐酸多巴胺注射液以及人尿进行检测,效果良好,样品回收率分别为94%~102%、93% ~97%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号