首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose a novel photovoltaic device using P3HT and ZnO as test materials for the p-type and n-type semiconductors, respectively. To fabricate an electrode of this device, Ag was deposited on a P3HT film by RF-sputtering under light illumination (wavelength λ 0=660 nm) while reversely biasing the P3HT/ZnO pn-junction. As a result, a unique granular Ag film was formed, which originated from a phonon-assisted process induced by an optical near-field in a self-organized manner. The fabricated device generated a photocurrent even though the incident light wavelength was as long as 670 nm, which is longer than the long-wavelength cutoff λ c (=570 nm) of the P3HT. The photocurrent was generated in a wavelength-selective manner, showing a maximum at the incident light wavelength of 620 nm, which was shorter than λ 0 because of the Stark effect brought about by the reverse bias DC electric field applied during the Ag deposition.  相似文献   

2.
We present series of strategies to enhance efficiency of ZnO nanorods based organic/inorganic solar cells with spin-coated P3HT:PCBM blend as active layer. The performance of the as-fabricated devices is improved by controlling the size of ZnO nanorods, annealing temperature and time of active layer, surface modification of ZnO with PSBTBT. Optimized device of ITO/ZnO nanorod/P3HT:PCBM/Ag device with PSBTBT surface modification and air exposure reaches an efficiency of 2.02% with a short-circuit current density, open-circuit voltage and fill factor of 13.23 mA cm−2, 0.547 V and 28%, respectively, under AM 1.5 irradiation of 100 mW m−2, the increase in efficiency is 7-fold of the PSBTBT surface modified ITO/ZnO nanorods/P3HT:PCBM/Ag device compared with the unmodified one, which is own to the increased interface contact, expanded light absorption, tailored band alignment attributed to PSBTBT. We found exposure to air and surface modification is crucial to improve the device performance, and we discussed the mechanisms that affect the performance of the devices in detail.  相似文献   

3.
《Current Applied Physics》2015,15(11):1364-1369
Inverted structure comes out to be a promising alternative for making polymer solar cells (PSC) with high efficiency and long-term stability. Vertically stacked functional layers with planar shapes often suffer contradictions in holding high optical absorption and excellent charge transfer/hindrance capability to construct well performed inverted PSC devices. Here, we give an example of rational control of the thickness of electron transport layer (ETL), hole transport layer (HTL) and organic active layer (OAL) to achieve a synergistic effect on promoting the overall photovoltaic behaviors. With in-depth exploration of the interaction between device performance and layer thickness, we obtain the optimized device ITO/ZnO Ncs (45 nm)/P3HT:PCBM (70 nm)/MoO3 (1 nm)/Ag (70 nm) exhibiting an Voc of 0.63 V, Jsc of 12.52 mA/cm2, FF of 54% and PCE of 4.26%.  相似文献   

4.
《Current Applied Physics》2015,15(7):829-832
Inverted organic solar cells (OSCs) based on poly (3-hexylthiophene) (P3HT):[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) bulk heterojunctions (BHJ) were fabricated with optimized ZnO/Ag/ZnO multilayer and conventional indium–tin oxide (ITO) cathode electrodes and their performance was compared. The ZnO/Ag/ZnO multilayer films showed sheet resistances in the range 3.6–3.9 Ω/sq, while ITO exhibited 14.2 Ω/sq. On the one hand, the carrier concentration gradually decreased from 1.74 × 1022 to 4.33 × 1021 cm−3 as the ZnO thickness increased from 8 to 80 nm, respectively. The transmittance of the ZnO(40 nm)/Ag(19 nm)/ZnO(40 nm) films was ∼95% at 550 nm, which is comparable to that of ITO (∼96%). The multilayer films were smooth with a root mean square (RMS) roughness of 0.81 nm. OSCs fabricated with the ZnO(40 nm)/Ag(19 nm)/ZnO(40 nm) film showed a power conversion efficiency (2.63%) comparable to that of OSCs with a conventional ITO cathode (2.71%).  相似文献   

5.
P-type ZnO was realized by dual-doping with nitrogen and silver via electrostatic-enhanced ultrasonic spray pyrolysis. The structural, electrical, and optical properties were explored by XRD, Hall-effect, and optical transmission spectra. The resistivity of ZnO:(N,Ag) film was found to be 56 Ω cm−1 with the high mobility of 76.1 cm2/V s. Compared with ZnO:Ag film, ZnO:(N,Ag) film exhibited a higher and more stable optical transmittance.  相似文献   

6.
Wavelength division multiplexing (WDM) is a common technique used to increase the capacity of optical communication networks. In this technique, data coming from different sources are transmitted through the same optical fiber using different optical carriers. We study a thermally controlled tunable photonic-crystal optical coupler. The device is designed using a triangular lattice of air holes in an epitaxially layered structure (InGaAsP/InP). In this configuration, the input and output waveguides are separated from each other, in contrast to other devices that require a reflective grating and circulators or beam splitters. We use the two-dimensional finite-difference time-domain method (2D-FDTD) to analyze the performance of this device. After optimization the parameters of this device, we study the effects of changing the temperature. Not only has the position of the resonant peak changed linearly with the temperature, but the efficiency is also doubled. A linear regression of the spectral response gives a slope of dλ/dT = +0.1 nm/°C in a temperature range of ΔT = 50°C for wavelengths close to 1550 nm. These results show the possibility of tuning this contra-directional coupler using the thermo-optical effect.  相似文献   

7.
We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol–gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.  相似文献   

8.
Electrolytes are finding applications as dielectric materials in low-voltage organic thin-film transistors (OTFT). The presence of mobile ions in these materials (polymer electrolytes or ion gels) gives rise to very high capacitance (>10 μF/cm2) and thus low transistor turn-on voltage. In order to establish fundamental limits in switching speeds of electrolyte gated OFETs, we carry out in situ optical spectroscopy measurement of a poly(3-hexylthiophene) (P3HT) OTFT gated with a LiClO4:poly(ethyleneoxide) (PEO) dielectric. Based on spectroscopic signatures of molecular vibrations and polaron transitions, we quantitatively determine charge carrier concentration and diffusion constants. We find two distinctively different regions: at V G≥−1.5 V, drift-diffusion (parallel to the semiconductor/dielectric interface) of hole-polarons in P3HT controls charging of the device; at V G<−1.5 V, electrochemical doping of the entire P3HT film occurs and charging is controlled by drift/diffusion (perpendicular to the interface) of ClO4 counter ions into the polymer semiconductor.  相似文献   

9.
For each commutative POV measure F there exists (Beneduci, J. Math. Phys. 47:062104-1, 2006; Int. J. Geom. Methods Mod. Phys. 3:1559, 2006) a PV measure E such that F can be interpreted as a random diffusion of E. In its turn, the self-adjoint operator A= λdE λ corresponding to E, can be interpreted (Beneduci, J. Math. Phys. 48:022102-1, 2007; Nuovo Cimento B 123:43–62, 2008) as the projection of a Naimark operator corresponding to the Naimark dilation E + of F. Moreover E can be algorithmically reconstructed by F. All that suggests that, in some sense, the observables represented by E and F should have the same informational content. We introduce an equivalence relation on the set of observables which we compare with other well known equivalence relations and prove that it is the only one for which E is always equivalent to F.  相似文献   

10.
Field ionization gas sensors based on ZnO nanorods (50–300 nm in diameter, and 3–8 μm in length) with and without a buffer layer were fabricated, and the influence of the orientation of nano-ZnO on the ionization response of devices was discussed, including the sensitivity and dynamic response of the ZnO nanorods with preferential orientation. The results indicated that ZnO nanorods as sensor anode could dramatically decrease the breakdown voltage. The XRD and SEM images illustrated that nano-ZnO with a ZnO buffer layer displayed high c-axis orientation, which helps to significantly reduce the breakdown voltage. Device A based on ZnO nanorods with a ZnO buffer layer could distinguish toluene and acetone. The dynamic responses of device A to the NO x compounds presented the sensitivity of 0.045 ± 0.007 ppm/pA and the response speed within 17–40 s, and indicated a linear relationship between NO x concentration and current response at low NO x concentrations. In addition, the dynamic responses to benzene, isopropyl alcohol, ethanol, and methanol reveals that the device has higher sensitivity to gas with larger static polarizability and lower ionization energy.  相似文献   

11.
Silver nanospheres (Ag NSs) buffer layers were introduced via a solution casting process to enhance the light absorption in poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) bulk heterojunction organic solar cells. These Ag NSs, as surface plasmons, could increase the optical electric field in the photoactive layer whilst simultaneously improving the light scattering. As a result, this buffer layer improves the light absorption of P3HT:PCBM blend and consequently improves the external quantum efficiency (EQE) of organic solar cells. In this work, different sizes of Ag NSs plasmon‐enhanced layer were investigated, with the aim of optimizing the performance of devices. UV‐vis spectrometer measurement demonstrates that the total optical absorption of P3HT:PCBM blend films in the spectral range of 350–650 nm is increased by ~4 and 6% with incorporation of the 20 and 40 nm Ag NSs, respectively. The Jsc was shown to increase by ~21 and 24% for 20 and 40 nm Ag NSs, respectively. This is due to the extra photogenerated excitons by the plasmonic resonance of Ag NSs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In this note we search for a family of solutions with Caustic singularity in non relativistic-renormalizable Hořava-Lifshitz (HL) theory without the general covariant. We show that in infrared (IR) limit and with a deviation from λ=1 we have no caustic singularity. Also in ultraviolet (UV) regime and for Ricci flat 3-dimensional (3d) spaces and codimension 1 and for λ≠1 the non linear terms should help bouncing this kind of most dangerous would be caustics. But if 3d curvature does not vanish, higher curvature terms do help caustics even in codimension one. Thus the arguments in (J. Cosmol. Astropart. Phys. 0909:005, 2009) are satisfied correctly.  相似文献   

13.
The photo-current of n-ZnO/p-Si heterojunction photodiodes was improved by embedding Ag nanoparticles in the interface (ZnO/nano-PAg/p-Si), and the ratio between photo- and dark-current increased by about three orders more than that of a n-ZnO/p-Si specimen. The improvement in the photo-current resulted from the light scattering of embedded Ag nanoparticles. The IV curve of n-ZnO/p-Si degraded after thermal treatment (A-ZnO/p-Si) because the silicon robbed the oxygen from ZnO to form amorphous silicon dioxide and left an oxygen vacancy. Notably, the properties of ZnO/nano-PAg/p-Si were better in the time-dependent photoresponse under 10 V bias. Ag nanoparticles (15–20 nm) scattered the UV light randomly and increased the probability for the absorption of ZnO to enhance the properties of the photodiode.  相似文献   

14.
Within Kubelka–Munk theory using the Lorenz relations, we have determined the correlation between the optical diffuse reflectance spectra R(λ) of cellulose pulp in the visible range (380–760 nm) and ultraviolet absorption (λ = 200–400 nm) of aqueous solutions containing residual lignins. The data obtained can be used to monitor and predict the results of digestion and bleach plants in the paper and pulp industry.  相似文献   

15.
Li2B4O7 (LBO)Cu,Ag,Mg phosphors have been prepared by the sintering technique.The roles of the Ag and Mg dopants in the phosphors have been studied using the methods of thermoluminescence (TL) glow curves and TL 3D spectra. The results indicated that proper concentrations of Ag and Mg can enhance the TL of LBOCu.It was also indicated that the intensity of TL peak at ~130℃ is reduced with the increasing Ag concentration, and enhanced with the increasing Mg concentration.From the TL 3D spectra, three emission bands (λ1 = 421 nm,λ2 = 380 nm, λ3 = 350nm) were observed the intensity of low energy emission band is reduced and that of the high energy is enhanced with the increasing dopant Ag; on the contrary, the intensity of low energy emission band is enhanced and that of the high energy one is reduced with the increasing dopant Mg.  相似文献   

16.
In an addendum to the recent systematic Hermitization of certain N by N matrix Hamiltonians H (N)(λ) (Znojil in J. Math. Phys. 50:122105, 2009) we propose an amendment H (N)(λ,λ) of the model. The gain is threefold. Firstly, the updated model acquires a natural mathematical meaning of Runge-Kutta approximant to a differential PT\mathcal{PT}-symmetric square well in which P\mathcal{P} is parity. Secondly, the appeal of the model in physics is enhanced since the related operator C\mathcal{C} of the so called “charge” (the requirement of observability of which defines the most popular Bender’s metric Q = PC\Theta=\mathcal{PC}) becomes also obtainable (and is constructed here) in an elementary antidiagonal matrix form at all N. Last but not least, the original phenomenological energy spectrum is not changed so that the domain of its reality (i.e., the interval of admissible couplings λ∈(−1,1)) remains the same.  相似文献   

17.
《Current Applied Physics》2020,20(11):1201-1206
Light-emitting organic semiconductors have attracted considerable attention for the nanoscale fabrication of organic-based displays and their potential application in optoelectronics, plasmonics, and photonics. In this study, core-shell hybrid nanostructures of organic rubrene coated on Ag nanoparticles (NPs) have been synthesized using a chemical reduction method. The thickness of the rubrene shell was 2.6–6.0 nm and the diameter of the Ag core was 30–70 nm. The optical and structural properties of the Ag/rubrene core-shell NPs were tuned by hydrothermal (HT) treatment at 190 °C. The Ag/rubrene core-shell NPs were characterized by high-resolution transmission electron microscopy and energy-dispersive X-ray (EDX) spectroscopy before and after the HT treatment, and their structural properties were confirmed through X-ray diffraction (XRD) analysis. XRD peaks related to an orthorhombic phase were observed along with the original triclinic crystal structure of the rubrene shell, and the triclinic crystal domain size increased from 28.2 nm to 30.8 nm owing to the HT treatment. Interestingly, the green light emission (λem = 550 nm) of the Ag/rubrene core-shell NPs changed to blue light emission (λem = 425 nm), increasing in intensity through the HT treatment. This is caused by the crystal change with H-type aggregation and enhanced energy transfer from a surface plasmon resonance.  相似文献   

18.
Al–Cu–Ag alloy was prepared in a graphite crucible under a vacuum atmosphere. The samples were directionally solidified upwards under an argon atmosphere with different temperature gradients (G=3.99–8.79 K/mm), at a constant growth rate (V=8.30 μm/s), and with different growth rates (V=1.83–498.25 μm/s), at a constant gradient (G=8.79 K/mm) by using the Bridgman type directional solidification apparatus. The microstructure of Al-12.80-at.%–Cu-18.10-at.%–Ag alloy seems to be two fibrous and one lamellar structure. The interlamellar spacings (λ) were measured from transverse sections of the samples. The dependence of interlamellar spacings (λ) on the temperature gradient (G) and the growth rate (V) were determined by using linear regression analysis. According to these results it has been found that the value of λ decreases with the increase of values of G and V. The values of λ 2 V were also determined by using the measured values of λ and V. The experimental results were compared with two-phase growth from binary and ternary eutectic liquid.  相似文献   

19.
Axially symmetric Bianchi type-I space time is considered in the presence of massless scalar field and cosmic strings in Barber’s (Gen. Relativ. Gravit. 14:117, 1982) self-creation theory with two conditions (i) A=B n and (ii) ε+λ=0. Some physical and kinematical properties of the model, thus obtained, are also discussed.  相似文献   

20.
The refractive index of soot is an essential parameter for its optical diagnostics. It is necessary for quantitative interpretation of LII (Laser Induced Incandescence) signals, light scattering or extinction measurements as well as for emissivity calculations. The most cited values have been determined by intrusive methods or without taking into account the soot size distribution and its specific morphology. In the present study, soot generated by the combustion of diesel and diesel/rapeseed methyl ester (RME) mixture (70% diesel and 30% RME) are extensively characterized by taking into account the morphology, the aggregate size distribution, the mass fraction and the spectral dispersion of light. The refractive index m for wavelengths λ between 300 and 1000 nm is determined for diesel and diester fuels by both in-situ and ex-situ methods. The ex-situ method is based on the interpretation of extinction spectra by taking into account soot sizes and fractal morphology with the RDG-FA (Rayleigh–Debye–Gans for Fractal Aggregate) theory. The in-situ approach is based on the comparison of the LII signals obtained with two different excitation wavelengths. The absorption function E(m) and the scattering function F(m) are examined. This study reveals similar optical properties of soot particles generated by both studied fuels even at ambient and flame temperatures. The function E(m) is shown to reach a maximum for λ=250 nm and to tend toward a plateau-like behavior close to E(m)=0.3 for higher wavelength (600<λ (nm)<1000). The function F(m) is found to be quite constant for 400<λ (nm)<1000 and equal to 0.31.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号