首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The dynamic binding status between the thrombin and its G‐quadruplex aptamers and the stability of its interaction partners were probed using our previously established fluorescence‐coupled capillary electrophoresis method. A 29‐nucleic acid thrombin binding aptamer was chosen as a model to study its binding affinity with the thrombin ligand. First, the effects of the cations on the formation of G‐quadruplex from unstructured 29‐nucleic acid thrombin binding aptamer were examined. Second, the rapid binding kinetics between the thrombin and 6‐carboxyfluorescein labeled G‐quadruplex aptamer was measured. Third, the stability of G‐quadruplex aptamer–thrombin complex was also examined in the presence of the interfering species. Remarkably, it was found that the complementary strand of 29‐nucleic acid thrombin binding aptamer could compete with G‐quadruplex aptamer and thus disassociated the G‐quadruplex structure into an unstructured aptamer. These data suggest that our in‐house established fluorescence‐coupled capillary electrophoresis assay could be applied to binding studies of the G‐quadruplex aptamers, thrombin, and their ligands, while overcoming the complicated and costly approaches currently available.  相似文献   

2.
Hu J  Easley CJ 《The Analyst》2011,136(17):3461-3468
Automated microchip electrophoresis was used as a simple and rapid method to measure effective dissociation constants (K(d,eff)) of aptamers against both large and small molecule targets. Human thrombin, immunoglobulin E (IgE), and adenosine triphosphate (ATP) were selected as model analytes to validate the method, with four ligands including two DNA aptamers for thrombin (two distinct epitopes), an IgE aptamer, and an ATP aptamer. The approach is based on a microchip version of a DNA mobility shift assay. Non-denaturing microchip gel electrophoresis separations of DNA could resolve and quantify unbound from target-bound aptamers when using large molecules as targets. To extend the technique to small molecule targets such as ATP, an aptamer/competitor strategy was used, in which a DNA competitor complementary to the aptamer could be displaced by ATP and electrophoretically resolved. Using an automated microchip electrophoresis platform, parallel separations of 11 titration samples were completed in ~0.5 h. Analytical performance comparisons show that our approach provides significant advantages in minimized reagent consumption (typically tens of pmol of aptamer and target), reduced analysis time, and minimized user interaction when compared to previously reported methods for aptamer K(d) measurement. Moreover, the flexibility and ease of K(d,eff) measurement for aptamers against large and small targets make this a unique and valuable approach that should find widespread use. Finally, the feasibility of using this method during aptamer selection processes (e.g. SELEX) was shown by accurate bulk K(d,eff) measurement of a known thrombin aptamer (THRaptA) spiked into a random-sequence DNA pool at as low as 5.0% (molar %) of the total pool; only ~825 fmol of total binding sequences were needed for an 11-point titration curve.  相似文献   

3.
4.
Huang DW  Niu CG  Qin PZ  Ruan M  Zeng GM 《Talanta》2010,83(1):185-189
In the present study, the authors report a novel sensitive method for the detection of thrombin using time-resolved fluorescence sensing platform based on two different thrombin aptamers. The thrombin 15-mer aptamer as a capture probe was covalently attached to the surface of glass slide, and the thrombin 29-mer aptamer was fluorescently labeled as a detection probe. A bifunctional europium complex was used as the fluorescent label. The introduction of thrombin triggers the two different thrombin aptamers and thrombin to form a sandwich structure. The fluorescence intensity is proportional to the thrombin concentration. The present sensing system could provide both a wide linear dynamic range and a low detection limit. The proposed sensing system also presented satisfactory specificity and selectivity. Results showed that thrombin was retained at the aptamer-modified glass surface while nonspecific proteins were removed by rinsing with buffer solution. This approach successfully showed the suitability of aptamers as low molecular weight receptors on glass slides for sensitive and specific protein detection.  相似文献   

5.
In DNA aptamer selection, existing methods do not discriminate aptamer sequences based on their binding affinity and function and the reproducibility of the selection is often poor, even for the selection of well-known aptamers like those that bind the commonly used model protein thrombin. In the present study, a novel single-round selection method (SR-CE selection) was developed by combining capillary electrophoresis (CE) with next generation sequencing. Using SR-CE selection, a successful semi-quantitative and semi-comprehensive aptamer selection for thrombin was demonstrated with high reproducibility for the first time. Selection rules based on dissociation equilibria and kinetics were devised to obtain families of analogous sequences. Selected sequences of the same family were shown to bind thrombin with high affinity. Furthermore, data acquired from SR-CE selection was mined by creating sub-libraries that were categorized by the functionality of the aptamers (e. g., pre-organized aptamers versus structure-induced aptamers). Using this approach, a novel fluorescent molecular recognition sensor for thrombin with nanomolar detection limits was discovered. Thus, in this proof-of-concept report, we have demonstrated the potential of a “DNA Aptaomics” approach to systematically design functional aptamers as well as to obtain high affinity aptamers.  相似文献   

6.
Thrombin, a multifunctional serine protease, has both procoagulant and anticoagulant functions in human blood. Thrombin has two electropositive exosites. One is the fibrinogen-binding site and the other is the heparin-binding site. Over the past decade, two thrombin-binding aptamers (15-mer and 29-mer) were reported by SELEX technique. Recently, many studies examined the interactions between the 15-mer aptamer and thrombin extensively, but the data on the difference of these two aptamers binding to thrombin are still lacking and worth investigating for fundamental understanding. In the present study, we combined conformational data from circular dichroism (CD), kinetics and thermodynamics information from surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to compare the binding mechanism between the two aptamers with thrombin. Special attentions were paid to the formation of G-quadruplex and the effects of ions on the aptamer conformation on the binding and the kinetics discrimination between specific and nonspecific interactions of the binding. The results indicated reasonably that the 15-mer aptamer bound to fibrinogen-binding site of thrombin using a G-quadruplex structure and was dominated by electrostatic interactions, while the 29-mer aptamer bound to heparin-binding site thrombin using a duplex structure and was driven mainly by hydrophobic effects.  相似文献   

7.
Structural characterization of aptamer-protein interactions is challenging and limited despite the tremendous applications of aptamers. Here we for the first time report a fluorescence anisotropy (FA) approach for mapping the interaction of an aptamer and its protein target at the single nucleotide level. Nine fluorescently labeled aptamers, each conjugated to a single tetramethylrhodamine at a specified nucleotide in the aptamer, were used to study their interactions with thrombin. Simultaneous monitoring of both fluorescence anisotropy changes and electrophoretic mobility shifts upon binding of the fluorescently modified aptamer to the protein provides unique information on the specific nucleotide site of binding. T25, T20, T7 and the 3'-end were identified as the close contact sites, and T3, C15T, and the 5'-end were identified as the sites distant from the binding. This approach is highly sensitive and does not require cross-linking reactions. Studies of aptamer-protein interactions using this technique are potentially useful for design, evolution, and modification of functional aptamers for a range of bioanalytical, diagnostic, and therapeutic applications.  相似文献   

8.
A facile and sensitive aptamer‐based protocol has been developed for protein assay on microfluidic platform with fluorescence detection using an off‐chip microarray scanner. Aptamer‐functionalized magnetic beads were used to capture thrombin that binds to a second aptamer fluorescently labeled by Cy3. Experimental conditions, such as incubation time and temperature, washing time, interfering proteins, and aptamer, etc., were optimized for the microchip method. This work demonstrated there was a good relationship between fluorescence intensity and thrombin concentration in the range of 65–1000 ng/mL with the RSD less than 8%. Notably, an analysis only needs 1 μL volume of sample injection and this system can capture extremely tiny amount thrombin (0.4 fmol). This method has been successfully applied to assay of thrombin in human serum with the recovery of 79.74–95.94%.  相似文献   

9.
The use of traditional CE to detect weak binding complexes is problematic due to the fast-off rate resulting in the dissociation of the complex during the separation process. Additionally, proteins involved in binding interactions often nonspecifically stick to the bare-silica capillary walls, which further complicates the binding analysis. Microchip CE allows flexibly positioning the detector along the separation channel and conveniently adjusting the separation length. A short separation length plus a high electric field enables rapid separations thus reducing both the dissociation of the complex and the amount of protein loss due to nonspecific adsorption during the separation process. Thrombin and a selective thrombin-binding aptamer were used to demonstrate the capability of microchip CE for the study of relatively weak binding systems that have inherent limitations when using the migration shift method or other CE methods. The rapid separation of the thrombin-aptamer complex from the free aptamer was achieved in less than 10 s on a single-cross glass microchip with a relatively short detection length (1.0 cm) and a high electric field (670 V/cm). The dissociation constant was determined to be 43 nM, consistent with reported results. In addition, aptamer probes were used for the quantitation of standard thrombin samples by constructing a calibration curve, which showed good linearity over two orders of magnitude with an LOD for thrombin of 5 nM at a three-fold S/N.  相似文献   

10.
Protein kinase Cs are a family of serine and threonine kinases that mediate a wide variety of cellular signalling processes such as cell growth, differentiation, apoptosis and tumor development. We have selected high-affinity DNA aptamers for PKCdelta by capillary electrophoresis based SELEX (systematic evolution of ligands by exponential enrichment, CE-SELEX). We have demonstrated that fluorescently tagged PB9 aptamer can specifically recognize PKCdelta under in vitro conditions. The Kd of the aptamer-protein binding is 122 nM. These aptamers will enable us to apply fluorescently labelled probes to study the spatiotemporal dynamics and activation of individual endogenous PKC isoforms during various cell signalling processes.  相似文献   

11.
介绍了一种利用互补核酸杂交富集金胶实现信号扩增的蛋白质生物传感器. 以凝血酶蛋白为研究对象, 利用凝血酶蛋白相对应的两段核酸适配体, 将适配体Ⅰ固定在磁性颗粒上, 用于特异性地捕获蛋白, 将适配体Ⅱ标记金胶作为检测信标. 由凝血酶蛋白和相对应的两段核酸适配体构建三明治结构的凝血酶蛋白生物传感器. 另外, 再通过信标金胶上过剩的核酸适配体链与另一段标记有金胶的互补核酸进一步杂交, 获得金胶的选择性聚集, 实现了信号扩增. 通过信号扩增, 使此传感器的灵敏度大大提高, 对凝血酶蛋白的检测下限可达到4.52×10-15 mol/L. 平行测定浓度为7.47×10-14 mol/L的凝血酶8次, 其RSD为3.0%. 该生物传感器对凝血酶蛋白有很好的特异性, 其它蛋白如溶菌酶和牛血清白蛋白的存在对于检测没有影响.  相似文献   

12.
《Electroanalysis》2018,30(3):398-401
This communication reports on electrochemical detection of thrombin based on labeling with osmium tetroxide bipyridine [OsO4(bipy)]. Tryptophan amino acids can be labeled at the C−C‐double bond, and at least some tryptophan moieties are accessible for labeling in thrombin. Using the catalytic hydrogen signal from adsorptive stripping voltammetry performed on hanging mercury drop electrode, we could detect as little as 1.47 nM [OsO4(bipy)]‐modified thrombin. We also tested the binding of [OsO4(bipy)]‐modified thrombin with the classic thrombin binding aptamer (TBA) on gold electrodes. This preliminary study revealed that even after modification, a major part of the affinity was conserved, and that the aptamer self‐assembled monolayer (SAM) could be regenerated several times. Molecular simulations confirm that [OsO4(bipy)]‐modified thrombin largely preserves the high binding affinity also of the alternative HD22 aptamer to thrombin, albeit at slightly reduced affinities due to steric hindrance when tryptophans 96 and 237 are labelled. Based on these simulations, compensatory modifications in the aptamer should result in significantly improved binding with labelled thrombin. This combined experimental‐computational approach lays the groundwork for the rational design of improved aptamer sensors for analytical applications.  相似文献   

13.
Aptamers are a new class of molecular probes for protein recognition, detection, and inhibition. Multivalent aptamer-protein binding through aptamer assembly has been currently developed as an effective way to achieve higher protein affinity and selectivity. In this study, the specific interaction between bivalent aptamer Bi-8S and thrombin has been measured directly and quantitatively by atomic force microscopy to investigate the unbinding dynamics and dissociation energy landscape of the multivalent interaction. Bivalent aptamer Bi-8S contains thrombin's two aptamers, 15apt and 27apt, which are linked by eight spacer phosphoramidites. The results revealed the sequential dissociation of the two aptamers. Moreover, the dynamic force spectroscopy data revealed that the 27apt's binding to the thrombin remains largely unaffected by the eight-spacer phosphoramidites within Bi-8S. In contrast, the eight-spacer phosphoramidites stabilized the 15apt-thrombin binding.  相似文献   

14.
We have applied surface plasmon resonance (SPR) spectroscopy, in combination with one-step direct binding, competition, and sandwiched assay schemes, to study thrombin binding to its DNA aptamers, with the aim to further the understanding of their interfacial binding characteristics. Using a 15-mer aptamer that binds thrombin primarily at the fibrinogen-recognition exosite as a model, we have demonstrated that introducing a DNA spacer in the aptamer enhances thrombin-binding capacity and stability, as similarly reported for hydrocarbon linkers. The bindings are aptamer surface coverage and salt concentration dependent. When free aptamers or DNA sequences complementary to the immobilized aptamer are applied after the formation of thrombin/aptamer complexes, bound thrombin is displaced to a certain extent, depending on the stability of the complexes formed under different conditions. When the 29-mer aptamer (specific to thrombin's heparin-binding exosite) is immobilized on the surface, its affinity to thrombin appears to be lower than the immobilized 15-mer aptamer, although the 29-mer aptamer is known to have a higher affinity in the solution phase. These findings underline the importance of aptamers' ability to fold into intermolecular structures and their accessibility for target capture. Using a sandwiched assay scheme followed by an additional signaling step involving biotin-streptavidin chemistry, we have observed the simultaneous binding of the 15- and 29-mer aptamers to thrombin protein at different exosites and have found that one aptamer depletes thrombin's affinity to the other when they bind together. We believe that these findings are invaluable for developing DNA aptamer-based biochips and biosensors.  相似文献   

15.
An original and simple methodology based on microchip electrophoresis (MCE) in a continuous frontal analysis mode (named frontal analysis continuous microchip electrophoresis, FACMCE) was developed for the simultaneous determination of the binding parameters, i.e. ligand-site dissociation constant (k(d)) and number of binding sites on the substrate (n). This simultaneous determination was exemplified with the interaction between an aptamer and its target. The selected target is a strongly basic protein, lysozyme, as its quantification is of great interest due to its antimicrobial and allergenic properties. A glass microdevice equipped with a fluorescence detection system was coated with hydroxypropylcellulose, reducing the electroosmotic flow and adsorption onto the channel walls. This microdevice allowed the continuous electrokinetic injection of a mixture of fluorescently labelled aptamer and non-labelled lysozyme. By determining the concentration of the free fluorescently labelled aptamer thanks to its corresponding plateau height, mathematical linearization methods allowed to determine a k(d) value of 48.4±8.0 nM, consistent with reported results (31 nM), while the average number of binding sites n on lysozyme, never determined before, was 0.16±0.03. These results seem to indicate that the buffer nature and the SELEX process should influence the number and affinity of the binding sites. In parallel it has been shown that the binding between lysozyme and its aptamer presents two sites of different binding affinities.  相似文献   

16.
Li Y  Guo L  Zhang F  Zhang Z  Tang J  Xie J 《Electrophoresis》2008,29(12):2570-2577
ACE technique provides an effective tool for the separation and identification of disease-related biomarkers in clinical analysis. In recent years, a couple of synthetic DNA or RNA oligonucleotides, known as aptamers, rival the specificity and affinity for targets to antibodies and are employed as one kind of powerful affinity probe in ACE. In this work, based on high affinity between antithrombin aptamer and thrombin (their dissociation constant is 0.5 nM), a carboxyfluorescein-labeled 29-nucleotide (nt) aptamer (F29-mer) was used and an aptamer-based affinity probe CE (aptamer-based APCE) method was successfully established for high-sensitive detection and quantitative analysis of thrombin. Experimental conditions including incubation temperature and time, buffer composition, and concentration of cations were investigated and optimized. Under the optimized condition, the linear range was from 0 to 400 nM and the LOD was 2 nM (74 ng/mL, S/N = 3), i.e., 40 amol, both in running buffer and in 5% v/v human serum. This LOD is the lowest one than those achieved by the previous APCE methods but based on a 15-mer aptamer. This approach offers a promising method for the rapid, selective, and sensitive detection of thrombin in practical utility. Further binding experiments using one carboxyfluorescein-labeled aptamer and the other nonlabeled aptamer or vice versa were carried out to deduce the formation of ternary complex when these two aptamers coexisted in the free solution with thrombin.  相似文献   

17.
In this work, aptamers-modified silver nanoparticles (AgNPs) were prepared as capture substrate, and fluorescent dyes-modified aptamers were synthesized as detection probes. The sandwich assay was based on dual aptamers, which was aimed to accomplish the highly sensitive detection of single protein and multiplex detection of proteins on one-spot. We found that aptamers-modified AgNPs based microarray was much superior to the aptamer based microarray in fluorescence detection of proteins. The result shows that the detection limit of the sandwich assay using AgNPs probes for thrombin or platelet-derived growth factor-BB (PDGF-BB) is 80 or 8 times lower than that of aptamers used directly. For multiplex detection of proteins, the detection limit was 625 pM for PDGF-BB and 21 pM for thrombin respectively. The sandwich assay based on dual aptamers and AgNPs was sensitive and specific.  相似文献   

18.
We explored a fluorescent strategy for sensing ochratoxin A (OTA) by using a single fluorophore-labeled aptamer for detection of OTA. This method relied on the change of the fluorescence intensity of the labeled dye induced by the specific binding of the fluorescent aptamer to OTA. Different fluorescein labeling sites of aptamers were screened, including the internal thymine bases, 3′-end, and 5′-end of the aptamer, and the effect of the labeling on the aptamer affinity was investigated. Some fluorophore-labeled aptamers showed a signal-on or signal-off response. With the fluorescent aptamer switch, simple, rapid, and selective sensing of OTA at nanomolar concentrations was achieved. OTA spiked in diluted red wine could be detected, showing the feasibility of the fluorescent aptamer for a complex matrix. This method shows potential for designing aptamer sensors for other targets.
Figure
A simple fluorescent approach for OTA sensing is achieved by using single fluorophore-labeled aptamer. A fluorophore is attached on one site of the aptamer. The affinity binding of OTA induces the alteration of fluorescence properties of the labeled fluorophore as the consequence of the conformation change of the aptamer. OTA can be detected by measuring the change of fluorescence signals of the labeled dye  相似文献   

19.
Poor sensitivity and low specificity of current molecular imaging probes limit their application in clinical settings. To address these challenges, we used a process known as cell‐SELEX to develop unique molecular probes termed aptamers with the high binding affinity, sensitivity, and specificity needed for in vivo molecular imaging inside living animals. Importantly, aptamers can be selected by cell‐SELEX to recognize target cells, or even surface membrane proteins, without requiring prior molecular signature information. As a result, we are able to present the first report of aptamers molecularly engineered with signaling molecules and optimized for the fluorescence imaging of specific tumor cells inside a mouse. Using a Cy5‐labeled aptamer TD05 (Cy5‐TD05) as the probe, the in vivo efficacy of aptamer‐based molecular imaging in Ramos (B‐cell lymphoma) xenograft nude mice was tested. After intravenous injection of Cy5‐TD05 into mice bearing grafted tumors, noninvasive, whole‐body fluorescence imaging then allowed the spatial and temporal distribution to be directly monitored. Our results demonstrate that the aptamers could effectively recognize tumors with high sensitivity and specificity, thus establishing the efficacy of these fluorescent aptamers for diagnostic applications and in vivo studies requiring real‐time molecular imaging.  相似文献   

20.
In this study, a functionalized nanocomposite-based electrochemiluminescence (ECL) sensor for detecting thrombin was developed. First, Ru(bpy)32+/β-cyclodextrin-Au nanoparticles (β-CD-AuNPs)/nanographene (NGP) composites were used to modify the glassy carbon electrode (GCE) surface, and then aptamers (TBA1 and TBA2 with a 1:1 M ratio) were labeled with ferrocene (Fc) acting as the probes and were attached to the composite via the host–guest recognition between β-CD and Fc. In the absence of thrombin, the quenching of Fc to [Ru(bpy)3]2+ was maintained, and “signal-off” ECL was observed. However, because of the specific combination of the aptamer probes and thrombin, the configuration of aptamer probes changed and escaped from the electrode surface once thrombin appears, which results in the quenching disappearance, and the ECL signal was changed from “off” to “on.” Meanwhile, the application of nanocomposites amplified the effect of “signal-on.” By this strategy, thrombin was detected with high sensitivity and with a detection limit down to 0.23 pM. Moreover, the relatively simple ECL sensor exhibited excellent reproducibility with at least 6 cycles of recovering the original signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号