首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxyl-doped potassium chloride single crystals are colored electrolytically at various temperatures and voltages using a pointed cathode and a flat anode. Characteristic OH spectral band is observed in the absorption spectrum of uncolored single crystal. Characteristic O, OH, U, V2, V3, O2−-Va+, F, R2 and M spectral bands are observed simultaneously in absorption spectra of colored single crystals. Current-time curve for electrolytic coloration of hydroxyl-doped potassium chloride single crystal and its relationship with electrolytic coloration process are given. Production and conversion of color centers are explained.  相似文献   

2.
O22−-doped NaCl crystals are colored electrolytically by using a pointed cathode and a flat anode at various temperatures and voltages, which mainly benefit from appropriate coloration temperatures and voltages as well as anode structure of used electrolysis apparatus. Characteristic OH, U, V2m, UA, V2, V3, O2−-Va+ complex, F, R1, R2 and M absorption bands are observed in absorption spectra of the colored crystals. Production and conversion of color centers in electrolytic coloration is explained. Current-time curves for electrolytic colorations and their relationships with electrolytic colorations were given.  相似文献   

3.
OH-doped KBr polycrystals were colored electrolytically by using a pointed cathode and a flat anode. Characteristic O, OH, U, Cu+ and absorption peaks were observed in resolved absorption spectrum of uncolored polycrystals. Herein the position of the absorption peak at room temperature was determined by using a Mollwo-Ivey plot. Characteristic V2, V3, Cu+, , I2 and F spectral bands were observed in Kubelka-Munk functions of colored polycrystals. Current-time curve for electrolytic coloration of an OH-doped KBr polycrystal and its relationship with electrolytic coloration process were given. Formation and conversion of color centers were explained.  相似文献   

4.
The electronic structures of SrMoO4 crystals containing F and F+ color centers with the lattice structure optimized are studied within the framework of the fully relativistic self-consistent Dirac–Slater theory, using a numerically discrete variational (DV-Xα) method. From the calculation, it is concluded that F and F+ color centers have donor energy level in the forbidden band. The electronic transition energies from the donor level to the bottom of the conduction band are 1.855 eV and 2.161 eV, respectively, which correspond to the 670 nm and 575 nm absorption bands. It is predicted that the 670 nm and 575 nm absorption bands originate from the F and F+ centers in SrMoO4 crystals.  相似文献   

5.
Four kinds of currently available Nd:hosted laser passive Q-switch and mode-locking modulators: plastic dye sheet, LiF:F2 color center crystal, Cr+4 :YAG crystal and RG1000 colored glass filter were investigated in detail and summarized for comparison for the first time. The LiF:F2 crystal with outstanding annealability, long lifetime, low cost and operability at high repetition rates is highly recommended.  相似文献   

6.
Air-grown sodium fluoride crystals were colored electrolytically by using a pointed cathode at various temperatures and electric field strengths, which should mainly benefit appropriate coloration temperatures and electric field strengths. , F, M, N1, N2 color centers and O2−-F+ complexes were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V color center migration was determined. The formation of the color centers was explained.  相似文献   

7.
The effect of impurities on the efficiency of the formation of color centers and hydrogen-bonded molecular complexes upon exposure to various radiations in lithium fluoride crystals grown in air is studied. The results of experiments for measuring optical properties, IR vibrational spectra, luminescence, and thermally stimulated luminescence are presented. The fact that the band in the range of 1800–2300 cm–1 corresponds to stretching vibrations of a complex with strong hydrogen bond is proved based on the Fermi-resonance perturbation in the region of 2080 cm–1, shaped as the Evans hole and bands A, B, and C. It is shown that the composition of these complexes includes an OH ion and an HF molecule. The crucial role of O2? V a + oxygen dipoles in the aggregation efficiency and gradient distribution of color centers and radiation resistance of hydroxyl ions is revealed. It is shown that products of radiation decomposition of OH ions stimulate, while decay of O2? V a + dipoles suppress, the formation of positively charged color centers.  相似文献   

8.
The EPR g factors, g|| and g, for the isoelectronic 3d9 ions Ni+ and Cu2+ at the tetragonal Cu+ site of the CuGaSe2 crystal are calculated from the high-order perturbation formulas based on a two-spin-orbit-parameter model. In the model, both the contributions to g factors from the spin-orbit parameter of central 3d9 ion and that of ligand ion are contained. The calculated results appear to be consistent with the experimental values. The tetragonal distortions (characterized by θθ0, where θ is the angle between the metal-ligand bond and C4 axis, and θ0≈54.74° is the same angle in cubic symmetry) of Ni+ and Cu2+ centers, which are different from the corresponding angle in the host CuGaSe2 crystal and from impurity to impurity, are obtained from the calculations. The difference of the sign of g||g between the isoelectronic Ni+ and Cu2+ centers is found to be due to the different tetragonal distortions of both centers in the CuGaSe2 crystal.  相似文献   

9.
Hydroxyl-doped sodium chloride crystals were successfully colored electrolytically by using pointed anode and flat cathode at various temperatures and under various electric field strengths. V2 and V3 color centers were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V2 and V3 color center migration was determined. Production of the V2 and V3 color centers and formation of current zones for the electrolytic colorations of the hydroxyl-doped sodium chloride crystals are explained.  相似文献   

10.
This paper is devoted to the third part of the analysis of the very weak absorption spectrum of the 18O3 isotopologue of ozone recorded by CW-Cavity Ring Down Spectroscopy between 5930 and 6900 cm−1. In the two first parts [A. Campargue, A. Liu, S. Kassi, D. Romanini, M.-R. De Backer-Barilly, A. Barbe, E. Starikova, S.A. Tashkun, Vl.G. Tyuterev, J. Mol. Spectrosc. (2009), doi: 10.1016/j.jms.2009.02.012 and E. Starikova, M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Campargue, A.W.Liu, S. Kassi, J. Mol. Spectrosc. (2009) doi: 10.1016/j.jms.2009.03.013], the effective operators approach was used to model the spectrum in the 6200–6400 and 5930–6080 cm−1 regions, respectively. The analysis of the whole investigated region is completed by the present investigation of the 6490–6900 cm−1 upper range. Three sets of interacting states have been treated separately. The first one falls in the 6490–6700 cm−1 region, where 1555 rovibrational transitions were assigned to three A-type bands: 3ν2 + 5ν3, 5ν1 + ν2 + ν3 and 2ν1 + 3ν2 + 3ν3 and one B-type band: ν1 + 3ν2 + 4ν3. The corresponding line positions were reproduced with an rms deviation of 18.4 × 10−3 cm−1 by using an effective Hamiltonian (EH) model involving eight vibrational states coupled by resonance interactions. In the highest spectral region – 6700–6900 cm−1 – 389 and 183 transitions have been assigned to the ν1 + 2ν2 + 5ν3 and 4ν1 + 3ν2 + ν3 A-type bands, respectively. These very weak bands correspond to the most excited upper vibrational states observed so far in ozone. The line positions of the ν1 + 2ν2 + 5ν3 band were reproduced with an rms deviation of 7.3 × 10−3 cm−1 by using an EH involving the {(054), (026), (125)} interacting states. The coupling of the (431) upper state with the (502) dark state was needed to account for the observed line positions of the 4ν1 + 3ν2 + ν3 band (rms = 5.7 × 10−3 cm−1).The dipole transition moment parameters were determined for the different observed bands. The obtained set of parameters and the experimentally determined energy levels were used to generate a complete line list provided as Supplementary Materials.The results of the analyses of the whole 5930–6900 cm−1 spectral region were gathered and used for a comparison of the band centres to their calculated values. The agreement achieved for both 18O3 and 16O3 (average difference on the order of 1 cm−1) indicates that the used potential energy surface provides accurate predictions up to a vibrational excitation approaching 80% of the dissociation energy. The comparison of the 18O3 and 16O3 band intensities is also discussed, opening a field of questions concerning the variation of the dipole moments and resonance intensity borrowing by isotopic substitution.  相似文献   

11.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

12.
We have investigated the photoluminescence (PL) and photostimulated luminescence (PSL) spectra at 300 K to study the effect of isoelectronic impurities K+ and I on the formation and energy structure of Eu2+-VCs isolated dipole centers and aggregate centers in the form of single crystals of CsEuBr3 in CsBr:Eu2+ single crystals. We have shown that K+ and I impurities in a concentration of 5 mol% do not have a substantial effect on the energy spectrum of isolated dipole centers in CsBr:Eu2+ single crystals and the processes for the formation of such centers during growth of CsBr:Eu single crystals from the melt by the Bridgman method. We have established that in Cs0.95K0.05Br:Eu2+, more favorable conditions are realized for the formation of aggregate centers than in CsBr:Eu2+ and CsBr0.95K0.05Br:Eu2+ single crystals. So in order to improve the storage properties of phosphors based on CsBr:Eu2+, in particular for increasing the efficiency of PSL excitation, it is expedient to dope them with K+ impurity in a concentration up to 5 mol%. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 5, pp. 627–630, September–October, 2007.  相似文献   

13.
Spectra of x-ray radiation-induced absorption of SrCl2−Ce crystals in the region of 340–830 nm under the effect of selective irradiation in the induced-absorption bands by both conventional and laser sources are investigated. It is established that irradiation of sufficient intensity causes irreversible photochemical transformations of PC, PC+, and Ce2+ color centers their destruction, and restoration of the transparency of the crystals. To whom correspondence should be addressed. I. Franko Lvov State University, 8, Kirill and Mefodii Str., Lvov, 290005, Ukraine. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 66, No. 5, pp. 666–668, September–October, 1999.  相似文献   

14.
Ammonium alum crystals are colored electrolytically using a pointed cathode and a flat anode at low temperatures and under various voltages. SO3?, SO2? and O3? hole-trapped centers are produced in colored ammonium alum crystals. Characteristic absorption bands of SO3?, SO2? and O3? hole-trapped centers are observed in absorption spectra of colored ammonium alum crystals. Production and conversion of hole-trapped centers are explained. Current–time curves for electrolytic coloration of ammonium alum crystal and their relationship with electrolytic coloration process are given.  相似文献   

15.
For the purpose of improving the visible method of γ-rays detection, detailed conditions with various acids have been examined for the color development of a fluoran-based black color former in acetonitrile. It is suggested that the protons (H+), which may be produced from acid generators by γ-ray radiation, can be properly detected by the color development of the black color former containing proper kinds and concentrations of bases. Reversible decolorization through the interaction between Mg2+ and polyamines (acyclic and macrocyclic) has been examined in order to reconfirm that the colored zwitterion is produced by the direct chemical interaction with Mg (ClO4)2 in the fluoran dye–acetonitrile solution.  相似文献   

16.
The g factors of a tetragonally-compressed Cu2+ center in NaCl: Cu+ crystal X-irradiated at room temperature are calculated from the high-order perturbation formulas based on the two-mechanism model. In the model, the contribution to g factors from both crystal-field (CF) and charge-transfer (CT) mechanisms are included. The calculations are based on the defect model that the tetragonally-compressed Cu2+center is assigned to the Cu2+ ion (which is caused by Cu+ ion (at the Na+ site) irradiated by X-ray) associated with a nearest Na+ ion vacancy VNa along C4 axis due to charge compensation. From the calculations, the g factors g|| and g are explained and the defect structure (charactering by the displacement ΔZ of the Cl ion intervening in Cu2+ and VNa) of the Cu2+ (or Cu2+-VNa) center is obtained. The results are discussed.  相似文献   

17.
The local structure and the g factor (gx, gy, and gz) of the Ni+ center in KTaO3 are theoretically studied using the perturbation formulas of the g factors for a 3d9 ion in orthorhombically elongated octahedra. The orthorhombic field parameters are determined from the superposition model and the local geometry of the system. In view of the covalency, the contributions from the ligand orbital and spin–orbit coupling interactions are taken into account from the cluster approach. In the calculations, the orthorhombic center is attributed to Ni+ occupying the host Ta5+ site, associated with the nearest-neighboring oxygen vacancy VO along the c-axis. Furthermore, the planar Ni+–O2− bonds are found to experience the relative variation ΔR (≈0.076 Å) along the a- and b-axis, respectively, due to the Jahn–Teller effect and the size mismatching substitution of Ta5+ by Ni+. Meanwhile, the effectively positive VO can make the central Ni+ displace away from VO along the c-axis by about 0.20 Å. The calculated g factors based on the above local distortions show good agreement with the experimental data.  相似文献   

18.
The (Na+) Sternheimer antishielding factor γ (Na+) was determined by 23Na NMR spectroscopy on sodium oxide chloride, Na3OCl. The quadrupolar coupling constant of the sodium ion in Na3OCl was determined to QCC=11.34 MHz, which presents the largest coupling constant of a sodium nucleus observed so far. Applying a simple point charge model, the largest principal value of the electric field gradient at the sodium site was calculated to Vzz=−6.76762·1020 V/m2. From these values we calculated the (Na+) Sternheimer antishielding factor to γ (Na+)=−5.36. In sodium oxide, Na2O, we observed an isotropic chemical shift of δCS=55.1 ppm, referenced to 1 M aqueous NaCl (δ=0 ppm).  相似文献   

19.
运用相对论的密度泛函离散变分法(DV-Xα)研究了CaWO4晶体中F型色心的电子结构. 计算结果表明,F和F+心在禁带中引入了新的施主能级;分析了晶体内可能存在的光学跃迁模式,并通过过渡态的方法计算了F,F+心跃迁到导带底的能量分别为1.92eV和2.42eV. 因此,从理论上推断了F和F+心在CaWO4晶体中可能引起650nm和515nm的吸收,由此说明CaWO4晶体中650nm和515nm吸收带起源于晶体中的F和F+心. 关键词: 4晶体')" href="#">CaWO4晶体 +心')" href="#">F和F+心 DV-Xα  相似文献   

20.
High-resolution (0.001 cm−1) coherent anti-Stokes Raman scattering (CARS) was used to observe the Q-branch structure of the IR-inactive ν1 symmetric stretching mode of 32S16O3 and its various 18O isotopomers. The ν1 spectrum of 32S16O3 reveals two intense Q-branches in the region 1065–1067 cm−1, with surprisingly complex vibrational–rotational structure not resolved in earlier studies. Efforts to simulate this with a simple Fermi-resonance model involving ν1 and 2ν4 states do not reproduce the spectral detail, nor do they yield reasonable spectroscopic parameters. A more subtle combination of Fermi resonance and indirect Coriolis interactions with nearby states, 2ν4(1=0, ±2), ν24(1=±1), 2ν2(1=0), is suspected and a determination of the location of these coupled states by high-resolution infrared measurements is under way. At medium resolution (0.125 cm−1), the infrared spectra reveal Q-branch features from which approximate band origins are estimated for the ν2, ν3, and ν4 fundamental modes of 32S18O3, 32S18O216O, and 32S18O16O2. These and literature data for 32S16O3 are used to calculate force constants for SO3 and a comparison is made with similar values for SO2 and SO. The frequencies and force constants are in excellent agreement with those obtained by Martin in a recent ab initio calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号