首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
双波段/双视场红外光学系统设计   总被引:3,自引:1,他引:2  
研究了双波段/双视场红外光学系统的设计,设计了双波段/双视场红外光学系统,引入衍射光学实现双波段成像,采用移动单个透镜实现视场切换.结果表明,该系统可以实现焦距为37mm/100mm,工作波段为3.7~4.3μm/8 12μm的双波段/双视场光学系统,F数为1.2,在空间频率201p/mm处的光学传递函数值>0.5.应用结果表明,该系统结构简单,像质好.  相似文献   

2.
新颖变焦双视场长波红外光学系统设计   总被引:1,自引:1,他引:0  
陈吕吉  陈津津  李萍 《红外技术》2011,33(7):406-410
介绍了一种新颖变焦双视场长波红外光学系统设计实例,适用于制冷型320×256凝视焦平面探测器.通过变倍组在一次像面前后移动实现变焦,同时实现近处景物调焦和温度补偿.该系统仅由5片透镜组成,可实现焦距为183 mm/61 mm两档变焦,工作波段为7.7.7~9.3 μm,F/数为3,满足100%冷光阑效率.具有变焦新颖、结构紧凑、像质高、透过率高、成本低等优点.  相似文献   

3.
王威  陈凡胜  崔坤 《红外技术》2015,37(2):114-118
地球静止轨道凝视成像技术是航天遥感领域的重要研究内容。为了实现静轨对地不间断观测的目的,设计了一套覆盖地球全圆盘的大视场中波红外凝视成像光学系统。通过光焦度分配、光线高度控制和冷阑匹配,实现了大视场二次成像光学结构;根据现有面型检测水平,合理分配非球面,解决了多重像差问题。结合实际装调工艺,对温度适应性情况进行讨论。设计得到的光学系统视场达到18°×18°,角分辨率为72mrad。设计结果表明,各个视场的MTF在奈奎斯特频率处(16.7 lp/mm)均大于0.7,像元尺寸内能量集中度大于83%,冷阑效率大于98%。该系统有望在静止轨道红外探测相机、高灵敏度天文卫星等领域实现重要应用价值。  相似文献   

4.
王希  彭晴晴  徐长彬  温宏波  赵昕 《激光与红外》2023,53(10):1575-1578
介绍了适用于4096×4096,F/#1的大靶面制冷型中波探测器的大视场大孔径红外成像系统的设计方案,采用二次成像的方式,减小大物镜的口径,提高孔径利用率;计算得到满足要求的初始结构,并分析了像差特性;通过优化初始结构、采用折/衍混合器件及非球面等方式校正大口径大视场带来的高阶像差。系统工作波段为37~48μm,焦距为60mm,视场角2ω=52°。全视场在50 lp/mm处的MTF高于045,满足设计要求。经过设计优化,实现了100冷光阑效率。  相似文献   

5.
6.
罗秦  张冬冬  钮新华 《红外》2017,38(8):14-18
针对地球环境遥感的大视场和宽 光谱的应用需求,在同轴三反光学系统的基础上,通过 视场离轴实现了无中心遮拦,并设计了一种焦 距为120 mm、F数为3.5、工作波长为0.4~1.65 μm、像元尺 寸为7.5 μm以及采用Cook三片式结构的光学系统。在没有使用自由曲 面的情况下,实现了30°×4°的大视场。其中,主镜为六 次双曲面,次镜为二次扁椭圆面,三镜为四次扁椭圆 面。在全视场范围内,该系统在奈奎斯特频率处的调制传递 函数(Modulation Transfer Function, MTF)大于0.6,接 近衍射极限。其弥散斑直径的均方根值小于探测器的像元尺 寸,畸变小于2.5%,说明本文系统具有优良的成像性能。  相似文献   

7.
手持双视场红外光学系统设计   总被引:1,自引:1,他引:0  
陈吕吉  徐曼  王红伟  李萍 《红外技术》2011,33(2):100-103,107
介绍了一种采用中波640×512元红外焦平面探测器的红外双视场光学系统设计实例,该系统工作波段为3.7~4.8μm,变倍比为3倍,F数为4,采用切换变倍方式实现变倍.该系统具有体积小,重量轻,分辨率高,像质高,工作温度范围宽等优点,能够很好地满足手持热像仪的实际需要.  相似文献   

8.
从分析红外材料在双波段上的色散特性出发,设计了一款共光路红外中、长波三视场光学系统。系统采用二次成像方式,满足100%冷光阑效率,在两个波段内同时完成了系统各视场的像差校正。设计结果表明,系统在4~5mm中波红外波段及8~9mm长波红外波段焦距、视场及F数均保持一致,各视场光学传递函数在20 lp/mm时均接近衍射极限。  相似文献   

9.
大视场曲面仿生复眼光学系统设计   总被引:1,自引:3,他引:1       下载免费PDF全文
胡雪蕾  高明  陈阳 《红外与激光工程》2020,49(1):0114002-0114002(9)
为了解决传统成像系统存在的大视场与高分辨率不可兼得的问题,设计了大视场曲面仿生复眼光学系统。首先,针对所采用的间隔型圆周分层微透镜阵列排布方式,建立了一种曲面仿生复眼光学系统成像原理数学模型;再使用微透镜阵列与转像系统相结合的成像方案解决了微透镜阵列所成的曲面像与平面探测器不匹配的问题;并使用光学设计软件对该系统进行仿真分析及公差分析。设计得到的曲面仿生复眼光学系统总视场为152°,组合系统的焦距为61.14 mm,角分辨率为2.304″,系统总长为16.39 mm。相对传统的大视场成像系统而言,此曲面仿生复眼成像系统的畸变更小、分辨率更高。  相似文献   

10.
王臣臣  邹刚毅  李瑞昌  樊学武 《红外与激光工程》2017,46(3):318002-0318002(5)
对偏视场光学系统的遮光罩进行优化设计。偏视场在一个方向上非对称,设计主镜内遮光罩需要进行光线追迹,难度大。采用痕迹图方法获得光线在空间的位置坐标,确定系统有效视场大小及挡光部分位置,对内遮光罩的挡光部分进行开口处理,得到一个上短下长的特殊鸭嘴型遮光罩,降低设计难度。经过优化分析,最终的主镜内遮光罩沿Z轴方向的尺寸缩减为原来的一半,在Y轴方向上尺寸减小来降低非有效视场的大小。使用TracePro软件对设计好的遮光罩进行建模、仿真,得到PST在离轴角度为30时达到10-9量级,小于系统的5.5910-7指标要求。结果表明:使用痕迹图法对偏视场光学系统的主镜内遮光罩进行设计是可行的。  相似文献   

11.
针对EAST托卡马克等离子体中波红外与可见光集成诊断系统进行了设计。系统采用独特的光路形式,使成像指标满足的同时,尽量避免光学元件受到辐射和污染;通过采用分色方式,实现中波红外与可见光两路同口径、同视场成像,提高了观测效率。最终设计完成了通光口径3 mm,视场5847的广角红外与可见等离子成像系统。装调后对各项指标测试结果表明,系统性能达到设计要求。通过对EAST托卡马克装置的放电过程成像实验表明,系统红外与可见两路实现了广角、清晰等离子成像。  相似文献   

12.
13.
超大视场红外光学镜头设计   总被引:1,自引:0,他引:1       下载免费PDF全文
陈建发  潘枝峰  王合龙 《红外与激光工程》2020,49(6):20190443-1-20190443-6
超大视场红外光学镜头在军事上主要用于对来袭目标进行告警,相比于常规红外光学系统,其设计具有许多不同的特点。结合实际工程应用,在投影方式、光学构型、像面照度、视场、无热化、评价方式等方面对超大视场红外光学系统设计的特点进行分析。给出了一个具体的设计实例,所用探测器采用1 024×1 024@15 μm制冷型中波红外探测器,光学系统工作波段3.7~4.95 μm,焦距9.6 mm,视场116°,仅采用4片透镜实现无热化设计,不含衍射面,工作温度覆盖范围?55~+70 ℃,镜头结构紧凑,总长度小于70 mm。像质评价结果表明:全视场单个像元角分辨率均匀性95%以上,单个像元能量集中度在75%以上,光学系统边缘视场照度为中心视场照度的90%以上。  相似文献   

14.
大视场红外折反光学系统杂散光分析   总被引:4,自引:4,他引:4       下载免费PDF全文
杂散光分析是保证光学系统成像质量的关键技术之一,根据红外光学系统杂散光的定义,指出大视场红外光学系统的杂光来源,以及杂光对系统的影响,并且建立了消杂光结构。在消杂结构中,为了减少内部辐射,遮光罩内部使用反射式挡光环。采用TracePro软件对系统进行建模、仿真分析,结果表明此红外光学系统的杂散光得到很好的抑制:太阳杂光抑制水平PST可以达到10-5~10-8,内部辐射到达像面杂散光能量量级为10-10 W,系统可以实现清晰成像。  相似文献   

15.
大视场大相对孔径长波红外扫描光学系统设计   总被引:2,自引:3,他引:2       下载免费PDF全文
采用288×4线阵探测器及二次成像方式设计了一种工作于7.5~10.5μm的大视场大相对孔径长波红外扫描型光学系统,系统凝视视场角为28°×21°,采用摆镜同楔形镜扫描扩展后系统视场角为78°×57°,该系统具有大相对孔径、F数为1.67、高成像质量等特点。由于长波红外可用材料有限,设计中采用锗材料和硒化锌材料校正色差,引入非球面校正系统球差,系统设计结果显示其成像质量接近衍射蓟县,色差矫正良好,在空间频率为20 lp/mm处,调制传递函数(MTF)均在0.3以上,能量集中度大于70%。  相似文献   

16.
曲锐  杨建峰  曹剑中  刘博 《红外与激光工程》2021,50(7):20200468-1-20200468-7
针对现有水下光学系统中存在的主要不足,就某大视场水下连续变焦光系统指标要求,从水下光窗选型、光窗畸变、色差等的影响入手,分析了水下平板光窗引入的相对畸变和倍率色差特性,给出了相应的应对措施。结合水下工况对包络和工作距的要求,给出了一种三组联动的变焦系统设计模型和相应调跟焦组件的设计方法;通过在PNNP型结构中引入像差稳定镜组,对动态像差做稳定和补偿,改善了光学结构的像差校正能力,同时规避了凸轮曲线断点问题;通过在物方侧镜组中设置调跟焦镜组,保证了变焦全程对近景目标的清晰成像。完成了一个4 K水下大视场连续变焦光学系统设计,该系统工作距为0.5 m~inf,设计波段为0.48~0.64 μm,采用3840×2160高灵敏CMOS面阵探测器,像元大小为2 μm,变焦全程F数最大恒定为2.8,可实现全视场5.9°~62°、10倍以上连续变焦功能,具有较短的变焦行程、平滑的变焦轨迹、优良的成像性能等优点。  相似文献   

17.
大视场凝视型红外共形光学系统设计   总被引:2,自引:1,他引:2       下载免费PDF全文
为提高导弹整流罩气动性能,增强导引头系统稳定性,增大观察视场,完成了共形整流罩结合红外鱼眼镜头的新型红外凝视成像导引头光学系统设计。光学系统采用的椭球形共形整流罩将反远距结构与f-θ成像相结合,通过控制像方视场角提高像面照度的均匀性。对不同结构共形系统的像差特性进行了分析。光学系统解决了大视场光阑像差问题,最终获得±90°的无渐晕观察视场,其冷光阑效率为100%,全视场MTF在15 lp/mm处均大于0.5,点斑均方根半径小于30μm,在半径为50μm圆内能量集中度为93%以上,像面相对照度高于85%,满足大视场光学系统的成像要求。  相似文献   

18.
针对空间碎片探测相机光学系统的使用要求,借助衍射光学元件特殊的消色差和消热差特性,提出了一种结构紧凑、成像质量良好的大相对孔径空间碎片探测相机光学系统结构,解决了以往该类系统相对孔径小、结构复杂等不足的问题,给出了100mm 焦距,1/1.5 相对孔径,6对角线视场的设计实例,并进行了像质评估,该结构可满足空间碎片探测相机光学系统对能量集中度、弥散斑直径、垂轴色差、畸变、热差等像差的要求。结果表明,衍射光学元件的使用实现了系统轻量化、小型化、高像质的设计要求,大大提高了该空间碎片探测相机的成像性能,为该类系统的设计提供了一种新的思路。  相似文献   

19.
In order to meet the requirements of the high gain and wide field of view (FOV) for indoor visible light communication (VLC) system, a new optical receiving system is proposed, which integrates a Fresnel lens with a hemispherical lens. The effects of the two lenses’ spacing and the radius of the hemispherical lens on the optical gain at different FOV are investigated. As the FOV increases, the designed antenna displays enhanced reception performance compared with the traditional receiving optical antenna. The optical gain of the designed antenna is 6.88 in the condition of FOV of 40°. To further verify the rationality of the designed antenna, a model of VLC system is established based on the designed antenna in a room with a size of 5 m×5 m×3 m. The results show that the received average power using the designed antenna increases by 22.81 dBm, and the average signal to noise ratio (SNR) is 2.3 times of that without any optical antenna. The designed antenna is promising for the application in indoor VLC systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号