首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为研究多孔材料对可燃气体的抑爆效果,选取了3类6种多孔材料分别组合后进行实验研究。以甲烷/空气预混气体作为研究对象,利用自制薄型铁环将多孔材料固定在密闭容器管道系统内,对比分析了薄型铁环、单层型多孔材料、双层组合型多孔材料和三层组合型多孔材料的抑爆效果。结果表明:薄型铁环增强了气体爆炸强度,铁环后爆炸压力最大;多孔材料抑爆效果明显,双层组合型多孔材料抑爆效果相比单层型多孔材料和三层组合型多孔材料稳定;抑爆效果最佳的组合型多孔材料为Al2O3 10 mm/30 PPI+SiC 20 mm/20 PPI,爆炸压力抑制效果最佳的组合型多孔材料为Al2O3 10 mm/30 PPI+Fe-Ni 10 mm/90 PPI+SiC 20 mm/10 PPI。  相似文献   

2.
为分析多孔材料对预混气体爆炸特性参数的影响效果,采用自主搭建的爆炸实验平台,探究不同孔隙度和厚度的多孔材料对当量比为1的甲烷/空气预混气体爆炸的作用行为。实验研究表明,不同孔隙度的多孔材料对爆炸火焰和超压具有促进或抑制两种不同的影响。孔隙度较小时,爆燃火焰传播速度随着材料厚度的增大而降低,并在厚度较大时,火焰有短暂的传播延时现象。孔隙度较大时,预混火焰冲击多孔材料时发生淬熄,但随后一段时间内,由于负压抽吸作用,在已爆区域一侧的材料表面产生扩散燃烧现象,且扩散燃烧程度与材料厚度成反比关系。多孔材料的固相结构能降低压力的泄放效率,同时可吸收能量,进而提高爆炸超压的上升速率,降低超压峰值。当每英寸长度孔数δ=10的多孔材料促进火焰传播时,与当量比为1的预混气体爆炸相比,超压峰值最大可提高约2倍,造成更严重的后果。火焰冲击δ=20的多孔材料时发生淬熄,最大超压衰减可达47.17%,δ=30时最大超压衰减了24.62%。  相似文献   

3.
为研究无约束条件下甲烷(CH4)/空气(air)预混气体的燃爆特性,以乳胶气球为反应容器开展了甲烷爆炸实验,结合Chemkin模拟和改进的比色测温技术,研究了不同当量比下甲烷/空气预混气体的火焰传播速度、爆炸超压及温度场分布等特征以及静置时间对预混气体燃爆特性的影响。实验结果表明:甲烷/空气预混气体的爆炸火焰传播速度呈振荡分布,当量比为0.83、1.06、1.30和1.55时的平均火焰传播速度分别为1.554m·s-1、2.122m·s-1、1.892m·s-1和1.428m·s-1;峰值超压随当量比的增加呈先增大后减小的趋势,当量比为1.06时基元反应CH3·+O2?O·+CH3O·的敏感性系数最大,从而加速了生成二氧化碳(CO2)的链反应,使得燃烧化学反应最彻底,峰值超压值最大;静置时间对火焰传播速度和爆炸峰值压力影响显著,最佳静置时间为6min;随着当量比的增大,爆炸火焰的平均温度呈现...  相似文献   

4.
为建立抑爆过程中,尿素对甲烷宏观抑爆效果与微观抑爆机理之间的联系,利用20 L球型爆炸测试装置开展实验,测量了尿素粉体抑制甲烷爆炸过程中爆炸压力,利用光栅光谱仪采集火焰发射光谱数据;采用光谱分析和数据同步分析方法,分析该抑爆过程中爆炸压力和NO、CN、CHO、HNO、OH等关键自由基或分子的变化,得出甲烷爆炸压力发展过程与相关自由基含量之间的耦合变化关系。研究表明,加入尿素能有效地降低甲烷的爆炸压力,延长甲烷的爆炸感应期;在尿素的作用条件,NO、HNO含量的升高和CN、CHO、OH含量的降低,可以抑制甲烷爆炸;NO、CN、CHO、HNO自由基分子与甲烷爆炸升压过程有较大联系;OH自由基一直存在于甲烷爆炸的整个过程中且含量较高;对以上自由基的干预,可以在相应阶段发挥抑爆作用。  相似文献   

5.
为了有效防治矿井瓦斯爆炸事故, 以瓦斯的主要成分甲烷作为模拟气体, 运用自主设计改装的XKWB-S型小尺寸石英玻璃管道实验系统, 结合高速摄影仪, 并采用FLACS数值模拟软件, 研究惰性气体抑爆条件下甲烷燃烧爆炸特性, 进行体积分数为6%~27%的CO2抑制体积分数为9%CH4爆炸的实验及数值模拟, 结果表明:各组分混合气体在爆炸传播过程中, 爆炸压力、火焰锋面速度和气体运动速度均呈现一定程度的波动, 且压力和速度没有同时达到最大值; CO2的加入有效抑制了甲烷/空气反应, 且添加CO2体积分数越大, 抑爆效果越明显, 模拟结果与实验结果基本吻合。  相似文献   

6.
为了探究三氟碘甲烷CF3I和二氧化碳CO2复合使用对甲烷爆炸的抑制效果,采用容积为20 L的球形爆炸实验装置,研究了单独和复合使用三氟碘甲烷和二氧化碳对甲烷爆炸压力特性的影响。研究结果表明:添加三氟碘甲烷和二氧化碳后,甲烷爆炸极限范围逐渐缩小,且三氟碘甲烷对甲烷爆炸极限的影响更显著,当三氟碘甲烷和二氧化碳的体积分数分别达到5.5%和32.0%时,甲烷爆炸上下限重合,临界氧的体积分数分别为17.85%和12.50%。可见三氟碘甲烷对甲烷爆炸极限的影响机制与二氧化碳不同,并不是通过降氧为主而发挥抑制作用的。三氟碘甲烷对甲烷爆炸的抑制效果明显优于二氧化碳,对比体积分数为9.5%的甲烷爆炸最大爆炸压力和最大爆炸压力上升速率下降的比率,5.0%三氟碘甲烷的抑爆效果约是等量二氧化碳的6倍和5倍。二氧化碳掺混少量三氟碘甲烷后,抑爆效果大幅提升,掺混比例越,高效果越明显,且对抑制甲烷爆炸压力作用的提升更显著。三氟碘甲烷掺混体积分数大于等于1.0%时,二氧化碳单位增量导致甲烷最大爆炸压力下降的幅度有所增加。这说明三氟碘甲烷的加入具有改善抑爆效果和增强抑爆效率的双重作用。  相似文献   

7.
针对管道输送可燃气体时爆炸引发的连锁安全问题,自行搭建了两节管道预混气爆炸传播及抑爆实验系统,开展了不同种类、不同盐类质量分数和不同雾通量的盐类超细水雾抑制甲烷体积分数为9.5%的甲烷-空气预混气爆炸的系列实验。基于火灾学和爆炸学理论,深入探讨了不同实验工况下爆炸超压振荡曲线、最大超压峰值、爆炸火焰阵面位置、火焰平均传播速度和火焰结构演化的差异性。研究表明:随着盐类添加剂(NaCl、NaHCO_3和MgCl_2)质量分数和雾通量的增大,最大爆炸超压峰值相对于纯水超细水雾作用时呈不同幅度下降,爆炸超压振荡曲线上升趋势缓慢,火焰平均传播速度下降趋势明显。爆炸火焰锋面在管道B内呈现不同次数的后退现象,到达管道末端的时间较无细水雾和纯水超细水雾下延迟效应明显。通过比较分析,发现含NaCl超细水雾在弱化爆炸超压、延缓火焰锋面推进、降低火焰平均传播速度以及火焰后退次数方面均优于含MgCl_2和NaHCO_3超细水雾。主要原因在于,阴离子Cl~-销毁链式爆炸反应中OH·、H·自由基的能力强于HCO_3~-,阳离子Na~+销毁爆炸反应中OH·、H·自由基的能力强于Mg~(2+)。  相似文献   

8.
周宁  耿莹  冯磊  刘超  张冰冰  赵会军 《实验力学》2015,30(5):643-648
在两端封闭的无缝不锈钢管道中,利用压力传感器、应变片以及数据采集系统实验测试了不同点火能作用下,管道内甲烷-空气预混气体爆炸波发展规律及由此造成的管道外壁的动态响应。结果表明,点火能量越大,爆炸反应程度越剧烈,管道内最大爆炸压力就越大,管道薄壁的最大动态应变也越大,爆炸波发展就越迅速,并且管壁动态应变信号和压力波信号出现较好的一致性。本文结果可为油气长输管道的爆炸破坏效应研究提供一种新的思路和方法。  相似文献   

9.
为研究泄压膜约束条件对甲烷/空气预混气体爆炸压力特性的影响,在方形火焰燃烧传播测试管道中布置压力传感器,开展不同泄压膜材料、泄压膜层数及泄压口位置实验。结果表明:牛皮纸和聚丙烯薄膜约束泄爆过程中,每增加一层泄压膜,管道内最大泄爆压力平均上升11.2%和12.3%。各强度泄压膜约束条件下,管道内最大泄爆压力随着泄压口位置接近点火端,均呈现Z形规律,当泄压口设置在距尾部端面0.25 m时,各曲线达到最小值,当泄压口设置在距尾部端面0.50 m时,各曲线出现最大值。  相似文献   

10.
为了研究不同湿度条件下低浓度甲烷-空气混合物爆炸特征,设计了饱和湿空气发生及储存装置,对管路、气囊和爆炸腔体进行温度控制和流量调节,实现了不同相对湿度的甲烷-空气混合气体的配置。采用20 L球形爆炸测试装置,分析不同相对湿度、甲烷浓度对混合物的最大爆炸压力、最大压力上升速率、爆炸下限及层流燃烧速度的影响。结果表明,随着相对湿度增大,最大爆炸压力和最大爆炸压力上升速率逐渐下降,且呈一定的线性关系。混合气体相对湿度从27.7%增大到80.1%时,甲烷爆炸下限从5.15%上升到5.25%,上升率1.9%,层流燃烧速度随相对湿度的增大也呈线性降低趋势。在本文条件下,相对湿度对甲烷-空气混合物的爆炸影响较小,这主要与常温常压下水蒸气的饱和分压力较低有关,但在高温高压时仍需考虑水蒸气含量的增大对混合气体爆炸特征的影响。  相似文献   

11.
为了研制绿色环保高效的抑爆剂,以疏水型气相二氧化硅和去离子水为原料,采用机械搅拌法制备具有“固包液”结构的干水材料。利用20 L近球形爆炸装置测试干水材料对瓦斯爆燃的抑制效果。实验结果表明:当添加的干水材料较少(2 g和3 g)时,干水材料对瓦斯爆燃产生促进效果;当添加的干水材料大于4 g时,对瓦斯爆燃有抑制效果。通过研究不同粒径的干水材料对瓦斯爆燃的影响,发现干水材料的粒径对瓦斯爆燃最大压力的影响较小,但显著影响最大爆燃压力上升速率;对比不同类型改性干水材料对瓦斯爆燃的抑制效果,综合比较得出抑制效果由强到弱顺序为:尿素改性干水材料、磷酸二氢铵改性干水材料、聚磷酸铵改性干水材料、普通干水材料。  相似文献   

12.
在20 L球形爆炸容器中对二甲醚/空气(DME/air)、二甲醚/空气/氩气(DME/air/Ar)混合物在不同初始状态下的爆炸特性进行实验研究,分析了不同初始压力、不同氩气(Ar)稀释浓度对爆炸极限、最大爆炸压力以及最大爆炸压力上升速率的影响。结果表明:DME/air混合物的最大爆炸压力和最大爆炸压力上升速率与DME在混合物中的浓度呈圆顶形关系,最大值出现在DME在混合物中的浓度为6.5%(即最佳当量比, φ=1)附近;初始压力的下降明显降低了DME/air混合物的爆炸上限,但对于其爆炸下限影响不显著;Ar的稀释对富燃DME/air混合物的最大爆炸压力和最大爆炸压力上升速率有显著的惰化作用,但对于贫燃DME/air混合物,最大爆炸压力和最大爆炸压力上升速率在一定的Ar稀释浓度范围内出现上升趋势,当Ar的稀释浓度大于20%,这2个爆炸参数值逐渐下降。  相似文献   

13.
为防控工业粉尘爆炸和完善粉尘爆炸测试方法,在Siwek20L球形爆炸测试系统内,实验研究了 不同点火能量下高、低挥发性粉尘的爆炸行为。对粉尘爆炸猛度(最大爆炸压力、最大升压速率和燃烧持续时 间)、敏感度(爆炸下限)及惰性介质的抑爆效力随点火能量的变化规律进行了重点探讨。结果表明,增加点火 能量能提高粉尘云爆炸能量和燃烧速率,低挥发性粉尘爆炸行为受点火能量的影响更显著。低挥发性粉尘在 低质量浓度下无法被低点火能量充分引燃,爆炸不良效应显著;随着粉尘质量浓度的增加,爆炸不良效应不 断减弱直至消失。低挥发性粉尘爆炸下限随点火能量增加急剧下降,而高挥发性粉尘爆炸下限受点火能量影 响较小。惰性介质抑爆效力随点火能量增加而下降。建议采用5~10kJ点火能量考察低挥发性粉尘爆炸下 限及惰性介质对粉尘爆炸的抑制效力。研究结果有助于理解粉尘爆炸规律、完善测试方法和安全设计。  相似文献   

14.
许晓元  孙金华  刘晅亚 《爆炸与冲击》2021,41(4):045401-1-045401-11
为了研究具有体积分数梯度的连通装置内甲烷-空气爆炸特性,以60 L圆柱体容器和20 L圆柱体容器通过3 m长,截面为0.035 m×0.035 m的方形管道而连接形成的容器管道连通装置作为研究对象,利用Fluidyn软件对均一体积分数的连通装置以及具有体积分数梯度的连通装置中甲烷-空气爆炸的特性进行了数值模拟。结果表明:连通装置中甲烷的均一体积分数为6.517%~8.067%时,并由大容器中心点火工况时,最大爆炸压力、最大爆炸压力上升速率、最高温度和最大速度,以及这些爆炸参数达到最大值时的时刻值随体积分数的变化约呈线性关系;连通装置大容器甲烷体积分数6.0%体积分数梯度为2.0%~8.0%且大容器中心点火时,最大爆炸压力、最大爆炸压力上升速率、最高温度和最大速度随体积分数梯度总体上呈现先增大后减小趋势;大容器中心点火时,最大爆炸压力位于小容器,最大压力上升速率位于管道1或管道2,最大速度位于管道3,速度值可达400~600m/s。本研究可为连通装置内可燃气体爆炸事故防控提供理论指导。  相似文献   

15.
采用20 L近球形粉尘爆炸实验系统,探究微米级铝粉在不同点火延迟时间、粉尘粒径及粉尘浓度下的爆炸特性规律。结果表明:当点火延迟时间在20~120 ms范围内,铝粉最大爆炸压力和最大爆炸压力上升速率先增大后减小,随铝粉粒径增大,最佳点火延迟时间增大;在任一点火延迟时间下,粒径大于8.12 μm的铝粉最大爆炸压力随粉尘粒径的减小呈增大的变化趋势;粒径大于8.12 μm的铝粉,在80~440 g/m3粉尘浓度范围内,铝粉最大爆炸压力和最大爆炸压力上升速率先增大后减小,且铝粉粒径越小,对应的最猛烈爆炸粉尘浓度越低。  相似文献   

16.
针对不同环境温度对瓦斯爆炸压力及最大压力上升速率的影响进行实验。研究表明,在其他条件不变的情况下,随着环境温度的增加最大爆炸压力逐渐减小,且最大爆炸压力与环境温度的倒数呈现线性衰减规律;随着环境温度的升高,化学反应速率增加,爆炸压力达到峰值所需的时间减少;瓦斯气体的最大压力上升速率随环境温度的升高呈非线性变化规律,在环境温度为298~473 K的范围内,最大压力上升速率基本不变。这些规律性的结论可为防治矿井瓦斯爆炸事故和煤层气的安全利用提供理论基础。  相似文献   

17.
为研究不同变质程度煤尘爆炸压力特性变化规律,以最大压力pmax和最大压力上升速率(dp/dt)max表征压力特性,使用近球形煤尘爆炸装置对褐煤、长焰煤、不黏煤和气煤的爆炸压力特性变化规律展开分析。研究发现:在4种煤尘样品中,褐煤的pmax和(dp/dt)max均最大,分别达0.71 MPa和65.69 MPa/s。随变质程度增大,长焰煤、不黏煤和气煤的pmax和(dp/dt)max均明显减小,说明以爆炸压力特性为标准,4种煤尘爆炸强度由高到低依次是褐煤、长焰煤、不黏煤和气煤。通过对比爆炸前后煤尘挥发分含量,得出参与爆炸的挥发分含量所占质量分数为46.28%~68.19%。在喷尘压力 p0=2.0 MPa,点火延迟时间t0=100 ms时,4种煤尘pmax值均达最大,分别为0.71、0.60、0.55和0.47 MPa。褐煤、不黏煤和气煤在 p0=2.0 MPa,t0=80 ms时(dp/dt)max达最大,而长焰煤则在 p0=2.0 MPa,t0=100 ms时(dp/dt)max达到最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号