首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
A series of meso-dialkyl, alkyl aryl and cycloalkyl calix(4)pyrroles (1-15) are studied under positive and negative ion electrospray ionization (ESI) conditions. The positive ion spectra show abundant [M + H](+) and [M + Na](+) ions and the negative ion spectra show the [M + Cl](-) (the Cl(-) ions from the solvent) and [M - H](-) ions. The collision induced dissociation (CID) spectra of [M + H](+), [M + Na](+), [M + Cl](-) and [M - H](-) ions are studied to understand their dissociation pathway and compared to that reported for M(+) under electron ionization (EI) conditions. The beta-cleavage process that was diagnostic to M(+) is absent in all the CID spectra of the ions studied under ESI. Dissociation of all the studied ions resulted in the fragment ions formed by sequential elimination of pyrrole (A) and/or dialkyl/alkyl aryl/cycloalkyl (B) groups involving hydrogen migration to pyrrole ring at each cleavage of A--B bond, which clearly reveals the arrangement of A and B groups in the calix(4)pyrroles. The source of hydrogen that migrates to pyrrole ring during A--B bond cleavage is investigated by the experiments on deuterated compounds and [M + D](+) ions; and confirmed that the hydrogen attached to pyrrole nitrogen, hydrogen on alpha-carbon of alkyl group and the H(+)/Na(+) ion that added during ESI process to generate [M + H](+)/[M + Na](+) ions involve in the migration. The yields of [M + Na](+) ions are found to be different for the isomeric meso-cycloalkyl compounds (cycloheptyl, and 2-, 3- and 4-methyl cyclohexyl) and for normal and N-confused calix(4)pyrroles. The isomeric methyl and 3-hydroxy/4-hydroxy phenyl calix(4)pyrroles show specific fragmentation pattern during the dissociation of their [M - H](-) ions.  相似文献   

2.
Electron ionization (EI) and positive electrospray ionization (ESI) mass spectra of selected diaryl enaminoketones and enaminothiones have been studied. In the EI mass spectra of both classes of compound, molecular ion peaks are accompanied by the peaks corresponding to the [M-H](+) ions. The formation of these ions can be rationalized by a cyclization reaction resulting in the formation of the respective isoxazolium and isothiazolium cations. Under positive ESI conditions, in the spectra recorded for the enaminoketones peaks corresponding to the [M+H](+), [M+Na](+) and [2M+Na](+) ions appeared, while in the spectra recorded for the enaminothiones, peaks corresponding to the [M-H](+) ions were dominant. These ions are most likely formed by oxidation of the neutral enaminothione molecules on the surface of the positively charged stainless steel capillary in the ESI ion source (anodic oxidation).  相似文献   

3.
A series of isomeric 2-aryl-6,6-dimethyltetrahydro-5-quinolinones (set I) and 2-aryl-7,7-dimethyltetrahydro-5-quinolinones (set II) were studied under positive ion electron ionization (EI) and electrospray ionization (ESI) techniques. Under EI conditions, the molecular ions were found to be less stable in set I isomers, and they resulted in abundant fragment ions, i.e., [M-CH(3)](+), [M-CO](+.), [M-HCO](+), [M-(CH(3),CO)](+), and [M-(CH(3),CH(2)O)](+), when compared with set II isomers. In addition, the set I isomers showed specific fragment ions corresponding to [M-OH](+) and [M-OCH(3)](+). The retro-Diels-Alder (RDA) product ion was always higher in set II isomers. The ESI mass spectra produced [M + H](+) ions, and their decomposition showed favorable loss of CH(3) radical, CH(4) and C(2)H(6) molecules in set I isomers. The set II isomers, however, showed predominant RDA product ions, and specific loss of H(2)O. The selectivity in EI and ESI was attributed to the instability of set I isomers by the presence of a gem-dimethyl group at the α-position, and it was supported by the data from model compounds without a gem-dimethyl group. Density functional theory (DFT) calculations successfully corroborated the fragmentation pathways for diagnostic ions. This study revealed the effect of a gem-dimethyl group located at the α-position to the carbonyl having aromatic/unsaturated carbon on the other side of the carbonyl group.  相似文献   

4.
The collision-induced dissociations of the even-electron [M + H](+) and/or [M - H](-) ions of 121 model compounds (mainly small aromatic compounds with one to three functional groups) ionized by electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) have been studied using an ion trap instrument, and the results are compared with the literature data. While some functional groups (such as COOH, COOCH(3), SO(3)H in the negative ion mode, or NO(2) in both the positive and negative ion modes) generally promote the loss of neutrals that are characteristic as well as specific, other functional groups (such as COOH in the positive ion mode) give rise to the loss of neutrals that are characteristic, but not specific. Finally, functional groups such as OH and NH(2) in aromatic compounds do not lead to the loss of a neutral that reflects the presence of these substituents. In general, the dissociation of [M + H](+) and [M - H](-) ions generated from aliphatic compounds or compounds containing an aliphatic moiety obeys the even-electron rule (loss of a molecule), but deviations from this rule (loss of a radical) are sometimes observed for aromatic compounds, in particular for nitroaromatic compounds. Thermochemical data and ab initio calculations at the CBS-QB3 level of theory provide an explanation for these exceptions. When comparing the dissociation behaviour of the even-electron [M + H](+) and/or [M - H](-) ions (generated by ESI or APCI) with that of the corresponding odd-electron [M](+) ions (generated by electron ionization, EI), three cases may be distinguished: (1) the dissociation of the two ionic species differs completely; (2) the dissociation involves the loss of a common neutral, yielding product ions differing in mass by one Da, or (3) the dissociations lead to a common product ion.  相似文献   

5.
This paper compares two liquid introduction atmospheric pressure ionization techniques for the analysis of alkyl ethoxysulfate (AES) anionic surfactant mixtures by mass spectrometry, i. e., electrospray ionization (ESI) in both positive and negative ion modes and atmospheric pressure chemical ionization (APCI) in positive ion mode, using a triple quadrupole mass spectrometer. Two ions are observed in ESI(+) for each individual AES component, [M + Na]+ and a “desulfated” ion [M − SO3 + H]+, whereas only one ion, [M − Na] is observed for each AES component in ESI(−). APCI(+) produces a protonated, “desulfated” ion of the form [M − NaSO3 + 2H]+ for each AES species in the mixture under low cone voltage (10 V) conditions. The mass spectral ion intensities of the individual AES components in either the series from ESI(+) or APCI(+) can be used to obtain an estimate of their relative concentrations in the mixture and of the average ethoxylate (EO) number of the sample. The precursor ions produced by either ESI(+) or ESI(−), when subjected to low-energy (50 eV) collision-induced dissociation, do not fragment to give ions that provide much structural information. The protonated, desulfated ions produced by APCI(+) form fragment ions which reveal structural information about the precursor ions, including alkyl chain length and EO number, under similar conditions. APCI(+) is less susceptible to matrix effects for quantitative work than ESI(+). Thus APCI(+) provides an additional tool for the analysis of anionic surfactants such as AES, especially in complex mixtures where tandem mass spectrometry is required for the identification of the individual components.  相似文献   

6.
The fragmentation of the sodium adduct ions for tert-butoxycarbonyl-L-prolyl-L-proline ethyl ester (Boc-L-Pro-L-Pro-OEt) was compared with that for Boc-D-Pro-L-Pro-OEt in positive-ion electrospray ionization (ESI) mass spectrometry. In the collision-induced dissociation (CID) mass spectra of the [M + Na](+) ions, the abundance of the [M + Na - C(CH(3))(3) + H](+) ion, which is due to the loss of a tert-butyl group from the [M + Na](+) ion for Boc-D-Pro-L-Pro-OEt, was about eight times higher than that for Boc-L-Pro-L-Pro-OEt. In addition, in the CID spectra of the sodium adduct fragment ion ([M + Na - Boc + H](+)), the abundance of the [M + Na - Boc - prolylresidue + H](+) ion, which is due to the loss of prolyl residue from the [M + Na - Boc + H](+) ion for Boc-L-Pro-L-Pro-OEt, was about five times higher than that for Boc-D-Pro-L-Pro-OEt. These results indicate that Boc-L-Pro-L-Pro-OEt was distinguished from Boc-D-Pro-L-Pro-OEt by the CID mass spectra of the sodium adduct ions in ESI mass spectrometry. The optimized geometries of the [M + Na](+) and the [M + Na - Boc + H](+) ions calculated by ab initio molecular orbital calculations suggest that the chiral recognition of these diastereomers was due to the difference of the orientation of a sodium ion to the oxygen and nitrogen atoms in dipeptide derivatives, and to the difference of the total energies between them.  相似文献   

7.
A variety of 5-alkoxycarbonyl-4-aryl-6-methyl-3,4-dihydro-2(1H)-pyridones and hexahydrofuro[3,4-b]-2(1H)-pyridones have been investigated by electron impact (EI) and electrospray ionisation (ESI) techniques. Sequential product ion fragmentation (MS(n)) was performed to elucidate the degradation pathways for these compounds. Comparisons are made between positive and negative even-electron ions from ESI spectra and the molecular radical cations obtained under EI conditions. The data collected in this paper provide information on the strong impact that different substituents have on the ion fragmentation process.  相似文献   

8.
The negative ion electrospray ionization (ESI) mass spectra of a series of dicarboxylic acids, a pair of isomeric (cis/trans) dicarboxylic acids and two pairs of isomeric (positional) substituted benzoic acids, including a pair of hydroxybenzoic acids, were recorded in the presence of halide ions (F(-), Cl(-), Br(-) and I(-)). The ESI mass spectra contained [M--H](-) and [M+X](-) ions, and formation of these ions is found to be characteristic of both the analyte and the halide ion used. The analytes showed a greater tendency to form adduct ions with Cl(-) under ESI conditions compared with the other halide ions used. The isomeric compounds yielded distinct spectra by which the isomers could be easily distinguished. The collision-induced dissociation mass spectra of [M+X](-) ions reflected the gas-phase basicities of both the halide ion and [M--H](-) ion of the analyte. However, the relative ordering of gas-phase basicities of all analyte [M--H](-) and halide ions could not account for the dominance of chloride ion adducts in ESI mass spectra of the analytes mixed with equimolar quantities of the four halides.  相似文献   

9.
Off-site detection of the hydrolysed products of sulfur mustards in aqueous samples is an important task in the verification of Chemical Weapons Convention (CWC)-related chemicals. The hydrolysed products of sulfur mustards are studied under positive and negative electrospray ionisation (ESI) conditions using an additive with a view to detecting them at trace levels. In the presence of cations (Li(+), Na(+), K(+) and NH(4) (+)), the positive ion ESI mass spectra of all the compounds include the corresponding cationised species; however, only the [M+NH(4)](+) ions form [M+H](+) ions upon decomposition. The tandem mass (MS/MS) spectra of [M+H](+) ions from all the hydrolysed products of the sulfur mustard homologues were distinct and allowed these compounds to be characterised unambiguously. Similarly, the negative ion ESI mass spectra of all the compounds show prominent adducts with added anions (F(-), Cl(-), Br(-), and I(-)), but the [M-H](-) ion can only be generated by decomposition of an [M+F](-) ion. The MS/MS spectra of the [M-H](-) ions from all the compounds result in a common product ion at m/z 77. A precursor ion scan of m/z 77 is shown to be useful in the rapid screening of these compounds in aqueous samples at trace levels, even in the presence of complex masking agents, without the use of time-consuming sample preparation and chromatography steps. An MS/MS method developed to measure the detection limits of the hydrolysed products of sulfur mustards found these to be in the range of 10-500 ppb.  相似文献   

10.
A series of cationic, zwitterionic and anionic fluorinated carbocyanine dyes, spin-coated on Si substrates, were measured with time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) under Ga(+) primary ion bombardment. Detailed fragmentation patterns were developed for all dyes measured. In the positive mode, the resulting spectra showed very intense signals for the precursor ions of the cationic dyes, whereas the protonated signals of the anionic dyes were hardly detected. Differences of three orders of magnitude were repeatedly observed for the secondary ion signal intensities of cationic and anionic dyes, respectively. All measured dyes yielded mass spectra containing several characteristic fragment ions. Although the secondary ion yields were still higher for the cationic than the anionic dye fragments, the difference was reduced to a factor of < or =10. This result and the fact that M(+), [M + H](+) or [M + 2H](+) are even-electron species make it very likely that the recorded fragments were not formed directly out of the (protonated) parent ions M(+), [M + H](+) or [M + 2H](+). In the negative mode, none of the recorded spectra contained molecular information. Only signals originating from some characteristic elements of the molecules (F, Cl), the anionic counter ion signal and some low-mass organic ions were detected. A comparative study was made between TOF-S-SIMS, using Ga(+) primary ions, and other mass spectrometric techniques, namely fast atom bombardment (FAB), electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). The measurements showed that MALDI, ESI and FAB all give rise to spectra containing molecular ion signals. ESI and FAB produced M(+) and [M + H](+) signals, originating from the cationic and zwitterionic dyes, in the positive mode and M(-) and [M - H](-) signals of the anionic and zwitterionic dyes in the negative mode. With MALDI, molecular ion signals were measured in both modes for all the dyes. Structural fragment ions were detected for FAB, ESI and MALDI in both the positive and negative modes. Compared with the other techniques, TOF-S-SIMS induced a higher degree of fragmentation.  相似文献   

11.
Electrospray ionization (ESI) and tandem mass spectrometry (MS/MS) experiments, as well as electronic impact (EI) and chemical ionization (CI) techniques, have been applied to the title compounds 1a-h. The observation of different fragmentation pathways in the three sets of spectra is in accord with different degrees of internal excitation of the investigated precursors. In ESI (methanol as solvent) and CI (methane as reagent gas) spectra, the MH(+) ion represents the most important peak, while the fragments [M - OH](+) and [M - SO](+) are either the base peak or a very abundant peak in the EI mass spectra of these compounds. ESI-MS/MS experiments on the parent ions [MH](+) show that the loss of a fragment of 140 Da corresponding to p-toluenesulfenic acid is common from all the precursors. As well as competitive pathways, the second generation ions have also been elucidated to allow some observations to be made concerning the relationships between structure type and mass spectrometric characteristics.  相似文献   

12.
The explosive triacetone triperoxide (TATP) has been analyzed by electrospray ionization mass spectrometry (ESI-MS) on a linear quadrupole instrument, giving a 62.5 ng limit of detection in full scan positive ion mode. In the ESI interface with no applied fragmentor voltage the m/z 245 [TATP + Na](+) ion was observed along with m/z 215 [TATP + Na - C(2)H(6)](+) and 81 [(CH(3))(2)CO + Na](+). When TATP was ionized by ESI with an applied fragmentor voltage of 75 V, ions at m/z 141 [C(4)H(6)O(4) + Na](+) and 172 [C(5)H(9)O(5) + Na](+) were also observed. When the precipitates formed in the synthesis of TATP were analyzed before the reaction was complete, a new series of ions was observed in which the ions were separated by 74 m/z units, with ions occurring at m/z 205, 279, 353, 427, 501, 575, 649 and 723. The series of evenly spaced ions is accounted for as oligomeric acetone carbonyl oxides terminated as hydroperoxides, [HOOC(CH(3))(2){OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1, 2 ... 8). The ESI-MS spectra for this homologous series of oligoperoxides have previously been observed from the ozonolysis of tetramethylethylene at low temperatures. Precipitates from the incomplete reaction mixture, under an applied fragmentor voltage of 100 V in ESI, produced an additional ion observed at m/z 99 [C(2)H(4)O(3) + Na](+), and a set of ions separated by 74 m/z units occurring at m/z 173, 247, 321, 395, 469 and 543, proposed to correspond to [CH(3)CO{OOC(CH(3))(2)}(n)OOH + Na](+) (n = 1,2 ... 5). Support for the assigned structures was obtained through the analysis of both protiated and perdeuterated TATP samples.  相似文献   

13.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

14.
Collision-induced fragmentation of the [M + Na](+) and [M + H](+) ions generated from 3-[4-bis-N,N-(2-chloroethyl)aminophenyl]acetates in the estrane series under electrospray/ionization was studied. Some regularities in fragmentation pathways depending on the nature of functional groups were established. Formation of the [(M + Na) NaCl](+) ions along with [(M + Na) HCl](+) ions from the [M + Na](+) ions was explained using quantum chemical calculations for some simplified models.  相似文献   

15.
The metabolism of lafutidine in human liver microsomes was studied using liquid chromatography/ion trap mass spectrometry with electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources. A total of 14 metabolites were identified including hydroxylated lafutidine and sulfonyl lafutidine as the major metabolites. The chemical properties and the MS(n) behaviors of lafutidine and all of its identified metabolites were studied in detail. Lafutidine had a fragmentation pattern as a result of homolytic bond cleavage in the MS/MS spectrum. This cleavage can form an odd-electron ion with the loss of furan-2-ylmethyl radical (-81 Da with a proton shift), which then sequentially loses neutral groups in the MS(3) spectrum. This fragmentation sequence was also observed from the metabolites with the unchanged sulfinyl moiety. When the sulfinyl moiety was oxidized to the sulfonyl moiety, this fragmentation sequence did not exist, which could be used to identify S-oxidation metabolites of lafutidine. In general, N-oxides could produce distinct [M+H-O](+) ions under LC/APCI-MS due to the thermal activation in the desolvation region of the API source, which could be used to identify N-oxidation metabolites of lafutidine. In order to avoid the possibility of false positives, the MS/MS spectrum of the [M+H-O](+) ion was compared with that of the non-N-oxidation metabolites or parent drug in the APCI source. If they were consistent, the structure could be finally confirmed. The exact masses for lafutidine and lafutidine N-oxide fragment ions were determined using an LTQ/Orbitrap mass spectrometer.  相似文献   

16.
Mass spectrometry of ochratoxin A (OTA) and B (OTB) under electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) was studied. ESI offers higher sensitivities and less fragmentation than APCI. A sensitive LC/MS/MS method for the determination of ochratoxin A (OTA) in human plasma samples was developed. The absolute minimum detection limit was around 10-20 pg per injection, corresponding to 0.5 ppb in an injection equivalent to 20-40microg of human plasma. Ochratoxin B (OTB) was used as an internal standard and its absence in real-life samples was carefully checked before samples were spiked with the internal standard. It was found that these two ochratoxins are susceptible to sodium adduct formation. Fragment ions from the [M + H](+) and [M + Na](+) ions of both OTA and OTB were monitored in the multiple reaction monitoring mode. Three quantitative approaches, standard addition method, internal standard method (using ochratoxin B as an internal standard) and external standard method, were compared in the analysis of human blood plasma. Results from the mass spectrometric method were comparable to those from a conventional LC/fluorescence method. The LC/MS/MS method was also applied to the analysis of contaminated coffee samples.  相似文献   

17.
A mass spectral study of a series of new Boc-C-linked carbo-beta(3)-peptides prepared from C-linked carbo-beta(3)-amino acids (Caa) was carried out using liquid secondary ion mass spectrometry (LSIMS), electrospray ionization (ESI) and tandem mass spectrometry. Using the nomenclature of Roepstorff and Fohlman, the positive ion high- and low energy collision-induced dissociation (CID) of [M + H - Boc + H](+) ions of the peptides produce both N- and C-terminus ions, y(n) (+) and b(n) (+) ions, with high abundance and other ions of low abundance. Further, characteristic fragment ions of carbohydrate moiety are observed. In contrast to the CID of protonated peptide acids, the CID of [M - H](-) ions of the beta(3)-peptide acids do not give b(n)(-) ions and show abundant z(n)(-) and c(n) (-) ions which are insignificant in the former. Two pairs of positionally isomeric Boc-carbo-beta(3)-dipeptides were differentiated by the CID of [M + H](+) ions in LSIMS and ESIMS. The fragment ion [M + H - C(CH(3))(3) + H](+) formed from [M + H](+) by the loss of 2-methylprop-2-ene is relatively more abundant in the dipeptide Boc-NH-beta-hGly-Caa(S)-OCH(3) (14) containing the sugar moiety at the C-terminus whereas it is insignificant in Boc-NH-Caa(S)-beta-hGly-OCH(3) (13), which has the sugar moiety at the N-terminus. Similarly, two pairs of diastereomeric dipeptides were distinguished by the high- and low-energy CID of [M + H](+) ions. The loss of 2-methylprop-2-ene is more pronounced for Boc-NH-Caa(R)-beta-hGly-OCH(3) (17) and Boc-NH-Caa(R)-Caa(S)-OCH(3) (18) isomers whereas it is insignificant for Boc-NH-Caa(S)-beta-hGly-OCH(3) (13) and Boc-NH-Caa(S)-Caa(S)-OCH(3) (2) isomers. This was attributed to a favorable configuration of the carbohydrate moiety favoring the 'H' migration involved in the loss of 2-methylprop-2-ene from the [M + H](+) ions of isomers 17 and 18 compared with the unfavorable configuration of the carbohydrate moiety in isomers 13 and 2.  相似文献   

18.
Diastereomeric conduramine derivatives, i.e., (1R,2S,3R/S,6S)-6-(N-carbomethoxyamino) 1,2-O-isopropylidenecyclohex-4-ene-1,2,3-triol (1 and 2) and their O-acetyl derivatives (3 and 4), were studied using gas chromatography (GC) with electron ionization (EI) and chemical ionization (CI). The EI mass spectra of diastereomeric pairs show consistent differences in the relative abundances of characteristic ions. The EI fragmentation patterns are based on precursor/product ion spectra, high-resolution mass spectrometry (HRMS) and deuterium labelling. The CI spectra show differences from the EI spectra, and the isobutane/CI spectra are much simpler than the methane/CI spectra. The differences shown in the CI spectra are similar to those shown in the product ion spectra of [M+H](+) ions generated under electrospray ionization (ESI) conditions. Theoretical calculations are performed to understand the observed differences. The differences in the relative stabilities of molecular ions, or protonated molecules at different sites, can explain the observed differences in the spectra.  相似文献   

19.
Two mass spectrometers, in parallel, were employed simultaneously for analysis of triacylglycerols in canola oil, for analysis of triolein oxidation products, and for analysis of triacylglycerol positional isomers separated using reversed-phase high-performance liquid chromatography. A triple quadrupole mass spectrometer was interfaced via an atmospheric pressure chemical ionization (APCI) interface to two reversed-phase liquid chromatographic columns in series. An ion trap mass spectrometer was coupled to the same two columns using an electrospray ionization (ESI) interface, with ammonium formate added as electrolyte. Electrospray ionization mass spectrometry (ESI-MS) under these conditions produced abundant ammonium adduct ions from triacylglycerols, which were then fragmented to produce MS/MS spectra and then fragmented further to produce MS/MS/MS spectra. ESI-MS/MS of the ammoniated adduct ions gave product ion mass spectra which were similar to mass spectra obtained by APCI-MS. ESI-MS/MS produced diacylglycerol fragment ions, and additional fragmentation (MS/MS/MS) produced [RCO](+) (acylium) ions, [RCOO+58](+) ions, and other related ions which allowed assignment of individual acyl chain identities. APCI-MS of triacylglycerol oxidation products produced spectra like those reported previously using APCI-MS. APCI-MS/MS produced ions related to individual fatty acid chains. ESI-MS of triacylglycerol oxidation products produced abundant ammonium adduct ions, even for those molecules which previously produced little or no intact molecular ions under APCI-MS conditions. Fragmentation (MS/MS) of the [M+NH(4)](+) ions produced results similar to those obtained by APCI-MS. Further fragmentation (MS/MS/MS) of the diacylglycerol fragments of oxidation products provided information on the oxidized individual fatty acyl chains. ESI-MS and APCI-MS were found to be complementary techniques, which together contributed to a better understanding of the identities of the products formed by oxidation of triacylglycerols.  相似文献   

20.
The mass spectral properties of 3,5- and 4,5-dicaffeoylquinic acids (DCQAs) and selected derivatives were examined using electron ionization (EI), fast atom bombardment (FAB) and electrospray ionization (ESI). EI analysis of the trimethylsilyl derivatives provides molecular mass (M(r)) information, but the spectrum is dominated by fragment ions of the caffeic acid group; isomers cannot be differentiated using EI. FAB analysis, in both the positive and negative ion detection modes, provides M(r) information on the free compounds, but little fragmentation is observed using normal scan conditions. The FAB mass-analyzed ion kinetic energy spectroscopic analysis of the free compounds does, however, permit differentiation of the isomers, with 3,5-DCQA showing selective loss of water, a process not observed with the 4,5-isomer. Both EI and FAB provide M(r) and some structural information when applied to the peracetate derivatives of the DCQAs. ESI of the DCQAs provides considerably more structural information, especially in the negative ion detection mode, and is the recommended method of analysis of the quinic acid esters. M(r) information, identity of the ester groups and differentiation of isomers are possible using ESI. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号