首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ground and excited state processes of eosin, erythrosin and rose bengal in aqueous solution were studied in the presence of lysozyme or bovine serum albumin (BSA). Noncovalent protein-dye binding was analyzed by circular dichroism (CD), fluorescence and UV–Vis absorption spectroscopy. The effects of protein concentrations and pH were studied. Fluorescence quenching of the dye takes place due to binding to lysozyme and fluorescence enhancement due to low loading to BSA. The effects of proteins on the xanthene triplet state and its precursor were observed by time-resolved 530 nm photolysis. The triplet lifetime is quenched by lysozyme and prolonged by loading to BSA. Light-induced damages on both the dyes and proteins were observed under exclusion of oxygen. Photo-oxidation is efficient for lysozyme and lower for BSA. The CD signal of the eosin/BSA system is maximum at pH 4, where the photo-oxidation is minor.  相似文献   

2.
We analyzed the photoinactivation of the membrane functions of bacteria and erythrocytes induced by xanthene dyes. The dyes tested were rose bengal, phloxine B, erythrosine B and eosin B. These dyes induced the leakage of K(+) from Staphylococcus aureus cells within minutes of photoirradiation, in the order of rose bengal > phloxine B > erythrosine B > eosin B. The ability of dyes to inhibit respiration was weak, except for rose bengal, and the dyes dissipated the membrane potential in similar time traces with changes in K(+) permeability. The xanthene dyes also induced the leakage of K(+) from bovine erythrocytes upon photoirradiation in the same order as that observed with bacteria. Furthermore, we found that the ability to cause the leakage of K(+) from erythrocytes was associated with dye-induced morphological changes, forming a crenated form from the normal discoid. These results are discussed in connection with the ability of xanthene dyes to generate singlet oxygen and bind to bacterial cells, and further compared with the actions of cationic porphyrins, which induced photoinactivation of bacteria through respiratory inhibition.  相似文献   

3.
Sensitized-photocatalytic decomposition of 2,4-dichlorophenol (2,4-DCP) using xan-thene dyes as photosensitizer on TiO2 particles under visible light irradiation was studied. 2,4-DCP can be decomposed efficiently by this method and the decomposition efficiency of 2,4-DCP decreases in the following order: eosin Y ≈ rose bengal > erythrosine B > rhodamine B.  相似文献   

4.
Biocompatible chitosan‐based polyelectrolyte complexes (PECs) doped with xanthene dyes (fluorescein, eosin Y, erythrosin B, rhodamine 6G) were synthesized and characterized by scanning electron microscopy, dynamic light scattering, zeta potential measurements, and absorption and luminescence (including polarized, time‐resolved, and phosphorescence) spectroscopy. The results are discussed in terms of the mechanism and rigidity of dye–PEC binding, the heavy‐atom effect in dyes and PEC stability. Eosin Y is found to be the optimal dopant, providing both a high dye content in PECs and a high quantum yield of fluorescence.  相似文献   

5.
Xanthenes form to an important class of dyes which are widely used. Most of them present three acid-base groups: two phenolic sites and one carboxylic site. Therefore, the pKa determination and the attribution of each group to the corresponding pKa value is a very important feature. Attempts to obtain reliable pKa through the potentiometry titration and the electronic absorption spectrophotometry using the first and second orders derivative failed. Due to the close pKa values allied to strong UV-Vis spectral overlap, multivariate analysis, a powerful chemometric method, is applied in this work. The determination was performed for eosin Y, erythrosin B, and bengal rose B, and also for other synthesized derivatives such as 2-(3,6-dihydroxy-9-acridinyl) benzoic acid, 2,4,5,7-tetranitrofluorescein, eosin methyl ester, and erythrosin methyl ester in water. These last two compounds (esters) permitted to attribute the pKa of the phenolic group, which is not easily recognizable for some investigated dyes. Besides the pKa determination, the chemometry allowed for estimating the electronic spectrum of some prevalent protolytic species and the substituents effects evaluation.  相似文献   

6.
During recent years, several publications have investigated the electrical bistability of spin cast films of halogenated fluorescein dyes. In the present contribution, we simulate the excited states of single fluorescein dyes with time-dependent density functional theory (TD-DFT) and we analyzed the band structure of the corresponding molecular crystals with DFT. More precisely, the molecules examined are fluorescein, erythrosine B, and rose bengal. We consider the molecular crystals of fluorescein in salt and lactone forms as well as erythrosine B. Rose bengal showed high quantum yield of the triplet state and high electronic affinity. Therefore, the rose bengal has very strong oxidation properties and it is able to form electrically bistable thin oxide layer. The poor crystal order and small bandwidths of fluorescein in salt form and erythrosine B indicated high resistivity for both crystals.  相似文献   

7.
The molecular aggregation of six rhodamine dyes (rhodamine 560, B, 3B, 19, 6G, 123) in layered silicate (saponite and fluorohectorite) dispersions was investigated by using visible (vis) spectroscopy. The dye molecular aggregation was influenced by the properties of both the silicates and the dyes themselves. The layer charge of the silicates enhanced the molecular aggregation of the hydrophilic, cationic dyes. The presence of a carboxyl acid group in the dye molecules inhibited adsorption of the dyes on the surface of fluorohectorite, a silicate with a high charge density. A lower or no adsorption could be observed by vis spectroscopy. Strong association of the dyes to the silicate surface led to remarkable changes in the dye spectra, mainly due to the molecular aggregation. Dye assemblies initially formed after mixing the dye solutions with silicate dispersions were unstable. Decomposition of the dye molecular assemblies, and the formation of new species or molecular aggregate rearrangements, were studied on the bases of time-difference spectra. The reaction pathways were specific, not only for the dyes, depending upon their molecular structure and properties, but also on the silicate substrates.  相似文献   

8.
Four adsorbents have been prepared from industrial wastes obtained from the steel and fertilizer industries and investigated for their utility to remove cationic dyes. Studies have shown that the adsorbents prepared from blast furnace sludge, dust, and slag have poor porosity and low surface area, resulting in very low efficiency for the adsorption of dyes. On the other hand, carbonaceous adsorbent prepared from carbon slurry waste obtained from the fertilizer industry was found to show good porosity and appreciable surface area and consequently adsorbs dyes to an appreciable extent. The adsorption of two cationic dyes, viz., rhodamine B and Bismark Brown R on carbonaceous adsorbent conforms to Langmuir equation, is a first-order process and pore diffusion controlled. As the adsorption of dyes investigated was appreciable on carbonaceous adsorbent, its efficiency was evaluated by comparing the results with those obtained on a standard activated charcoal sample. It was found that prepared carbonaceous adsorbent exhibits dye removal efficiency that is about 80-90% of that observed with standard activated charcoal samples. Thus, it can be fruitfully used for the removal of dyes and is a suitable alternative to standard activated charcoal in view of its cheaper cost.  相似文献   

9.
《化学:亚洲杂志》2017,12(12):1314-1325
Bifunctional SBA‐1 mesoporous silica nanoparticles (MSNs) with carboxylic acid and amino groups (denoted as CNS‐10‐10) have been successfully synthesized, characterized, and employed as adsorbents for dye removal. Adsorbent CNS‐10‐10 shows high affinity towards cationic and anionic dyes in a wide pH range, and exhibits selective dye removal of a two‐dye mixture system of cationic methylene blue and anionic eosin Y. By changing the pH of the medium, the selectivity of the adsorption behavior can be easily modulated. For comparison purposes, the counterparts, that is, pure silica SBA‐1 MSNs (CS‐0) and those with either carboxylic acid or amino functional groups (denoted as CS‐10 and NS‐10, respectively) were also prepared to evaluate their dye‐adsorption behaviors. As revealed by the zeta‐potential measurements, the electrostatic interaction between the adsorbent surface and the dye molecule plays an important role in the adsorption mechanism. Adsorbent CNS‐10‐10 can be easily regenerated and reused, and maintains its adsorption efficiency up to 80 % after four cycles.  相似文献   

10.
The removal of cationic dyes, methylene blue(MB) and rhodamine B(RB), and anionic dyes, methyl or-ange(MO) and eosin Y(EY), from aqueous solutions by adsorption using Cu2Se nanoparticles(Cu2SeNPs) was studied. The effects of the initial pH values, adsorbent doses, contact time, initial dye concentrations, salt concentrations, and operation temperatures on the adsorption capacities were investigated. The adsorption process was better fitted the Langmuir equation and pseudo-second-order kinetic model, and was spontaneous and endothermic as well. The adsorption mechanism was probably based on the electrostatic interactions and π-π interactions between Cu2SeNPs and dyes. For an adsorbent of 0.4 g/L of Cu2SeNPs, the adsorption capacities of 23.1(MB), 22.9(RB) and 23.9(EY) mg/g were achieved, respectively, with an initial dye concentration of 10 mg/g(pH=8 for MB and pH=4 for RB and EY) and a contact time of 120 min. The removal rate of MB was still 70.4% for Cu2SeNPs being reused in the 5th cycle. Furthermore, the recycled Cu2SeNPs produced from selenium nanoparticles adsorbing copper were also an effective adsorbent for the removal of dyes. Cu2SeNPs showed great potential as a new adsorbent for dyes removal due to its good stability, functionalization and reusability.  相似文献   

11.
Modified waste sugarcane bagasse (SCB) was prepared to remove cationic dyes: methylene blue and rhodamine B from aqueous solution by using a continuous mode. Effects of flow rate on adsorption of the two dyes in fixed bed column were studied. Competitive adsorption kinetics of the two dyes in binary system was investigated in detail. Results showed that the adsorption capacities of the modified sorbent for methylene blue and rhodamine B in one component system were 1.7 and 0.4 mmol g?1, respectively. Competitive adsorption process in the binary system could be divided into three phases: free adsorption, substitution adsorption and adsorption equilibrium. 0.19 mmol of rhodamine B absorbed was replaced by 0.35 mmol of methylene blue in the second phase. Simple modified Yoon–Nelson model was used to predict the adsorption kinetics for the first time. The obtained adsorption rate constants for the two dyes in the three phases both followed the order: phase I > phase III > phase II, demonstrating that substitution adsorption phase is the rate determining step. Desorption experiment showed that the loaded two dyes could be separated and recycled by using the mixture solution of HCl (0.1 mol L?1) and ethanol as eluent. The prepared fixed bed column had great potential in industrial wastewater treatment.  相似文献   

12.
利用j嗪染料辛巴蓝F-3GA修饰经戊二醛交联的啤酒废酵母菌,得到一种新型染料亲和吸附剂.辛巴蓝F-3GA的固载量为161.1 mg/g.以溶菌酶为研究对象,考察吸附时间、酶初始浓度、pH值、离子强度等因素对吸附率的影响.结果表明:当pH=7.0时,其对溶菌酶有较高的吸附量(229.1 mg/g),吸附性能明显优于未接枝...  相似文献   

13.
Dye‐loaded polymer nanoparticles (NPs) emerge as a powerful tool for bioimaging applications, owing to their exceptional brightness and controlled small size. However, aggregation‐caused quenching (ACQ) and leakage of dyes at high loading remain important challenges of these nanomaterials. The use of bulky hydrophobic counterions has been recently proposed as an effective approach to minimize ACQ and dye leakage, but the role of counterion structure is still poorly understood. Here, a systematic study based on ten counterions, ranging from small hydrophilic perchlorate up to large hydrophobic tetraphenylborate derivatives, reveals how counterion nature can control encapsulation and emission of a cationic dye (rhodamine B octadecyl ester) in NPs prepared by nanoprecipitation of a biodegradable polymer, poly‐lactide‐co‐glycolide (PLGA). We found that increase in counterion hydrophobicity enhances dye encapsulation efficiency and prevents dye adsorption at the particle surface. Cellular imaging studies revealed that ≥95 % encapsulation efficiency, achieved with most hydrophobic counterions (fluorinated tetraphenylborates), is absolutely required because non‐encapsulated dye species at the surface of NPs are the origin of dye leakage and strong fluorescence background in cells. The size of counterions is found to be essential to prevent ACQ, where the largest species, serving as effective spacer between dyes, provide the highest fluorescence quantum yield. Moreover, we found that the most hydrophobic counterions favor dye–dye coupling inside NPs, leading to ON/OFF fluorescence switching of single particles. By contrast, less hydrophobic counterions tend to disperse dyes in the polymer matrix favoring stable emission of NPs. The obtained structure‐property relationships validate the counterion‐based approach as a mature concept to fight ACQ and dye leakage in the development of advanced polymeric nanomaterials with controlled optical properties.  相似文献   

14.
Photophysics of xanthene dyes in surfactant solution   总被引:1,自引:0,他引:1  
The spectral (both absorption and fluorescence) and photoelectrochemical studies of some anionic xanthene dyes namely erythrosine B, rose bengal and eosin have been carried out in micellar solution of cationic cetyl trimethyl ammonium bromide (CTAB), anionic sodium dodecyl sulphate (SDS) and neutral triton X-100 (TX-100). The results show that all these dyes form 1:1 electron-donor-acceptor (EDA) or charge-transfer (CT) complexes with TX-100, which acts as an electron donor. There is no interaction of these dyes with SDS, whereas the interaction with CTAB is mainly electrostatic in nature. In presence of TX-100, these dyes show enhancement of fluorescence intensity with a red shift and develop photovoltage in a photoelectrochemical cell. A good correlation has been found among the photovoltage generation in the systems consisting of these dyes and TX-100, spectral shift due to complex formation and thermodynamic properties of these complexes.  相似文献   

15.
Metal–organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO‐66‐Urea‐based flexible membranes with MOF loadings of 50 ( 1 ), 60 ( 2 ), and 70 wt % ( 3 ) were designed and prepared by post‐synthetic polymerization of UiO‐66‐NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation.  相似文献   

16.
The spectral (both absorption and fluorescence) and photoelectrochemical studies of a few selective dyes, namely, anionic erythrosin B, neutral riboflavin and cationic safranin O have been carried out in aqueous solution of triton X-100, a neutral surfactant. The results show that the ionic dyes, erythrosin B and safranin O form 1:1 electron donor-acceptor (EDA) or charge-transfer (CT) complexes with triton X-100 both in the ground and excited states, whereas neutral dye riboflavin in its excited state forms 1:1 complex with triton X-100. In these complexes, the dyes act as electron acceptors whereas triton X-100 acts as an electron donor. The fluorescence spectra of erythrosin B and safranin O in presence of triton X-100 show enhancement of fluorescence intensity with red and blue shifts respectively while riboflavin shows normal quenching of fluorescence. A good correlation has been found among photovoltage generation of the systems consisting of these dyes and triton X-100, spectral shift due to complex formation and thermodynamic properties of these complexes.  相似文献   

17.
In weak acidic medium, anticancer antibiotics bleomycin A5 (BLMA5) and bleomycin A2 (BLMA2) can react with halofluorescein dyes such as erythrosin (Ery), eosin Y (EY), eosin B (EB) and rose bengal (RB) by virtue of electrostatic attraction and hydrophobic force to form the ion-association complexes, which can result in the fading reactions of four halofluorescein dyes. The maximum fading wavelengths of these four dyes were located at 527 nm for Ery, 515 nm for EY, 517 nm for EB and 546 nm for RB, respectively. The decrements of absorbance (AA) were directly proportional to the concentrations of bleomycin in a certain range. A new method for the determination of bleomycins anticancer drugs based on fading reactions of halofluorescein dyes has been developed. The method was not only highly sensitive but also simple and rapid. The molar absorptivities (ε) ranged from 1.5 × 10^5 to 7.5 × 10^5 L·mol^-1·cm^-1. It was applied to determination of the bleomycins in human serum, urine and rabbit serum samples. In this work, the spectral properties and the optimum reaction conditions were investigated. The structure of ion-association complexes and the reaction mechanism were discussed.  相似文献   

18.
The UV absorption spectra of rhodamine B and G molecules isolated from industrial dye samples were obtained. Two procedures were used. In one of them, rhodamine B molecules were displaced with water into a heptane layer from a solution of the dye in an alcohol-heptane mixture. The second procedure involved heating of the dye introduced into cellulose triacetate films. Individual rhodamine molecules (namely, dye cation-chlorine anion ion pairs) prepared by both methods did not absorb visible light. The spectra of individual rhodamine molecules coincided with the spectra of so-called pseudoleucobases of xanthene dyes reported in the literature. The conclusion was drawn that the chromaticity property in the series of xanthene dyes appeared because of the formation of supramolecular dimeric and larger aggregates, as was earlier established for triphenylmethane dyes (TPMDs) and copper phthalocyanine (CuPc). At the same time, individual xanthene dye molecules, like TPMD and CuPc molecules, are not chromogens.  相似文献   

19.
以改性玉米苞叶纤维为载体(MCF),负载Mn(II)和Fe(II)制备了Mn(II)-Fe(II)-MCF复合材料,催化H2O2氧化水中染料。通过傅立叶变换红外/近红外成像系统和扫描电子显微镜对其结构和形貌进行表征。实验结果表明:当染料浓度为10 mg·L-1,Mn(II)-Fe(II)-MCF用量为4 g·L-1,H2O2初始浓度为1.56 mmol·L-1,Mn(II)-Fe(II)-MCF对四种染料的催化效率明显不同。阳离子蓝X-GRRL(CBX-GRRL)降解效果最好,其次是甲基橙(MO)、次甲基蓝(MB)和罗丹明B(RhB)。对染料的氧化反应进行动力学分析,MO的降解反应为二级反应,CBX-GRRL、MB和RhB的降解反应均为一级反应。Mn(II)-Fe(II)-MCF适合催化氧化偶氮染料废水。  相似文献   

20.
Semiconductor photocatalysis is considered one of the most promising technologies for water purification from toxic organic dyes. However, to reliably evaluate the possibility of using a given material as a photocatalyst, it is crucial to investigate not only the photocatalytic activity but also its affinity towards various dyes and reusability. In this work, we studied the adsorptive/photocatalytic properties of hollow-spherical raspberry-like SnO2 and its SnO2/SnS2 heterostructures that were obtained via a chemical conversion method using three different concentrations of a sulfide precursor (thioacetamide). The adsorptive/photocatalytic properties of the samples towards cationic rhodamine B (RhB) and anionic indigo carmine (IC) were analyzed using uncommon wall zeta potential measurements, hydrodynamic diameter studies, and adsorption/photodecomposition tests. Moreover, after conducting cyclic experiments, we investigated the (micro)structural changes of the reused photocatalysts by scanning electron microscopy and Fourier-transform infrared spectroscopy. The obtained results revealed that the sensitization of SnO2 resulted not only in the significantly enhanced photocatalytic performance of the heterostructures, but also completely changed their affinity towards dyes. Furthermore, despite the seemingly best photocatalytic performance, the sample with the highest SnS2 content was unstable due to its (micro)structure. This work demonstrates that dye adsorption/desorption processes may overlap the results of cyclic photodecomposition kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号