首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of microwave spectrum investigation of the excited vibrational states of furfural in the frequency range between 49 and 149 GHz are reported. In total 15 excited vibrational states (9 for trans-furfural and 6 for cis-furfural) were assigned and analyzed. Six of the 15 investigated states were assigned for the first time. Accurate values of rigid rotor and quartic centrifugal distortion constants of asymmetric top Hamiltonian have been determined for 13 excited states. Also for some states several sextic and octic level constants were needed in order to fit the data within experimental accuracy. The vt = 3 and vs = 1, va = 1 states of trans-furfural were found to be strongly perturbed and only rotational transitions with low Ka values can be reliably identified in this study.  相似文献   

2.
A global fit within experimental accuracy of microwave rotational transitions in the ground and first excited torsional states (vt = 0 and 1) of methylformate (HCOOCH3) is reported, which combines older measurements from the literature with new measurements from Kharkov. In this study the so-called ‘‘rho axis method’’ that treats simultaneously both A and E species of the ground and first excited torsional states is used. The final fit requires 55 parameters to achieve an overall unitless weighted standard deviation of 0.71 for a total of 10533 transitions (corresponding to 9298 measured lines) with rotational quantum numbers up to J ? 62 and Ka ? 26 in the ground state and J ? 35 and Ka ? 23 in the first excited torsional state. These results represent a significant improvement over past fitting attempts, providing for the first time a fit within experimental accuracy of both ground and first excited torsional states.  相似文献   

3.
The high-resolution Fourier transform spectrum of the ν8 CO-stretching band of CH318OH between 900 and 1100 cm−1 has been recorded at the Canadian Light Source (CLS) synchrotron facility in Saskatoon, and the majority of the torsion-rotation structure has been analyzed. For the νt = 0 torsional ground state, subbands have been identified for K values from 0 to 11 for A and E torsional symmetries up to J values typically well over 30. For νt = 1, A and E subbands have been assigned up to K = 7, and several νt = 2 subbands have also been identified. Upper-state term values determined from the assigned transitions using the Ritz program have been fitted to J(J + 1) power-series expansions to obtain substate origins and sets of state-specific parameters giving a compact representation of the substate J-dependence. The νt = 0 subband origins have been fitted to effective molecular constants for the excited CO-stretching state and a torsional barrier of 377.49(32) cm−1 is found, representing a 0.89% increase over the ground-state value. The vibrational energy for the CO-stretch state was found to be 1007.49(7) cm−1. A number of subband-wide and J-localized perturbations have been seen in the spectrum, arising both from anharmonic and Coriolis interactions, and several of the interacting states have been identified.  相似文献   

4.
The ground state rotational spectrum of the 14NF3 and 15NF3 isotopic species of nitrogen fluoride has been observed in the ∼450-810 GHz frequency range. This investigation allowed us to improve the rotational parameters for both isotopologues. In particular, for the first time the K = 3 line splitting parameter and the sextic centrifugal distortion constants have been determined for 15NF3.  相似文献   

5.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

6.
The rotation-torsion spectrum of the asymmetric frame-asymmetric top internal rotor propargyl alcohol (HCCCH2OH) has been extended into the millimeter and submillimeter wave spectral regions. Over 2000 ground torsional state transitions have been measured and analyzed up to rotational quantum numbers J = 80 and Ka = 33 through a frequency of 633 GHz. The newly measured transitions were added to approximately 200 previously reported and now unambiguously assigned microwave transitions to comprise a data set of 2390 transitions which has been fit to 59 kHz using a reduced axis method (RAM) Hamiltonian. The ground state has been confirmed to consist of a symmetric and an antisymmetric gauche conformer with no spectroscopic evidence of stable trans conformer. A complete set of rotation and distortion constants through 6th order and a number of the 8th and one 10th order constants for the normal species are presented along with those determined from a re-analysis of the existing OD species data. The a and b symmetry Coriolis interaction constants and the gauche+ gauche− tunnelling frequency of 652389.4 MHz has been determined for the OH species while the b symmetry Coriolis interaction and the 213 480 MHz tunnelling frequency were determined for the OD species.  相似文献   

7.
The pure rotational J + 1 ← J transitions, with J = 0, 1, 3-8, of H13CN have been observed in the millimeter- and submillimeter-wave region using the Lamb-dip technique to resolve the hyperfine structure due to H, 13C, and 14N. The present observations allow us to provide for the first time the spin-rotation constant of 13C and the spin-spin interaction constant S12 (between H and 13C) as well as to remarkably improve the quadrupole coupling and spin-rotation constants of 14N. In addition, a good empirical estimation of CI(H), based on ab initio calculations, has also been provided. Furthermore, our frequencies together with previous data permit to determine the most accurate ground state rotational parameters known up to now.  相似文献   

8.
The microwave rotational spectra of the trans conformer of 3-fluorophenol have been observed in excited torsional states and analyzed in the frequency range 12.0-43.0 GHz using conventional microwave and Radio-Frequency Microwave Double Resonance (RFMWDR) techniques. Analysis of the ground torsional state spectrum has been extended to higher rotational states. Least-squares analysis of three sets of rotational transitions yield rotational and centrifugal distortion constants for the ground and first two excited torsional states. A nonlinear behavior of the variation of inertial defect with the torsional quantum number was observed.  相似文献   

9.
The room-temperature rotational spectrum of pyruvonitrile (acetyl cyanide, CH3COCN) was measured up to 324 GHz, and additional measurements were also made in supersonic expansion in the region 7-19 GHz. The available data sets for the A and E torsional sublevels were extended to over 1200 transitions, J = 65 and Ka = 38 for the ground vibrational state, and to comparable numbers of transitions for first excited states of the methyl torsional mode ν18, and the in-plane CCN bending mode ν12. The collected experimental measurements were fitted with several different computer programs for dealing with the effects of methyl torsional motion on the rotational spectrum and many spectroscopic constants have been determined. The experimental results are discussed in detail and are augmented by ab initio computations. Stark effect measurements in supersonic expansion were used to precisely determine the electric dipole moment of pyruvonitrile, ∣μa∣ = 2.462(2) D, ∣μb∣ = 2.442(2) D, μtot = 3.468(2) D. Pyruvonitrile, as an 8-atom molecule with a sizable dipole moment, is a possible candidate for astrophysical detection and the present work provides the laboratory data necessary for that purpose.  相似文献   

10.
In order to provide accurate rest frequencies for astronomical searches, the spectrum of perdeuterated methanol, CD3OD, has been measured in the frequency range 62-233 GHz. A total of 379 lines was measured from rotational states up to J=20 and K=10 within the ground and first excited torsional states (vt=0 and 1). Using a one-dimensional torsion-rotation Hamiltonian, the lines were fitted to measurement accuracy (<30 kHz).  相似文献   

11.
Fourier-transform far-infrared spectra of CH318OH in the 15-470 cm−1 region have been analyzed by means of the Ritz assignment program. The far-infrared data have been combined with the literature microwave and millimeter-wave measurements in a full global fitting of the first three torsional states (νt = 0, 1, and 2) of the CH318OH ground vibrational state. The fitted dataset includes 550 microwave and millimeter-wave lines and more than 17 000 Fourier-transform transitions covering the quantum number ranges J ? 30, K ? 15, and νt ? 2. With incorporation of 79 adjustable parameters, the global fit achieved convergence with an overall weighted standard deviation of 1.072, essentially to within the assigned measurement uncertainties of ±50 kHz for almost all of the microwave and millimeter-wave lines and ±6 MHz (0.0002 cm−1) to ±15 MHz (0.0005 cm−1) for the Fourier-transform far-infrared measurements. Based on the global fit results, a database has been compiled containing transition frequencies, quantum numbers, lower state energies and transition strengths. This database will provide support for present and future astronomical studies, such as the on-going Orion surveys in preparation for the launch of the Herschel Space Observatory, in identifying isotopic methanol contributions to interstellar spectra.  相似文献   

12.
The rotational spectrum of pyruvic acid has been investigated for the first time in the millimeter-wave region, at 160-314 GHz, and also in supersonic expansion, at 10-17.4 GHz. The analysis of the broadband spectra recorded in this work was carried out with the newly developed AABS software package for Assignment and Analysis of Broadband Spectra, and precise spectroscopic constants are reported for the ground state, the first excited state of the low-frequency skeletal torsional mode ν24, and the first excited state of the methyl torsional mode ν23. Limited results have also been obtained for several higher excited states. The dataset for the ground state currently exceeds 1500 lines and for both the A and E internal rotor sublevels spans the complete range of values of Ka at the mid values of J for the measured transitions. The results were analysed with three freely available computer programs employing different strategies for dealing with internal rotation and a comparative discussion of their merits is made.  相似文献   

13.
Previous work involving the rotational spectrum of 2-aminopyridine was limited to the lower frequencies of 4-40 GHz with very few lines being assigned. This work extends this earlier study. Here we present a much more extensive measurement and assignment of the rotational spectrum of 2-aminopyridine in the frequency range of 75-110 GHz. The observed frequencies have been assigned to the ground (0+ state) and the first excited state in the inversion vibration (0 state). Measurements of these two states have been extended up to J=46. With the newly assigned lines, significantly improved rotational constants and all five centrifugal distortion constants have been obtained.  相似文献   

14.
A global fit within experimental accuracy of microwave and millimeter-wave transitions in the ground and first excited torsional states of methyl carbamate (H2NC(O)OCH3) is presented. The data set consisting of 995 vt = 0 and 731 vt = 1 transition frequencies combines 1544 new measurements from Kharkov with previously published vt = 0 microwave lines. In this study the so-called “rho axis method” that treats simultaneously both A and E species of the ground and first excited torsional states is applied to the methyl carbamate data set for the first time. The final fit requires only 32 parameters to achieve a unitless weighted standard deviation for the whole fit of 0.89 for a total of 1726 transitions with rotational quantum numbers up to J ? 20 and Ka ? 10. The barrier to internal rotation of the methyl group obtained in this study, V3 = 359.141(24) cm−1, is in good agreement with previously published values but more accurate.  相似文献   

15.
The Fourier transform infrared (FTIR) absorption spectrum of the ν12 fundamental band of ethylene-d4 (C2D4) was recorded in the 1017-1137 cm−1 region with an unapodized resolution of 0.0063 cm−1. Upper state (v12 = 1) rovibrational constants consisting of three rotational and five quartic constants were improved by assigning and fitting 2103 infrared transitions using Watson’s A-reduced Hamiltonian in the Ir representation. The band centre of the A-type ν12 band is found to be 1076.98480 ± 0.00002 cm−1. The present analysis covering a wider wavenumber range and higher J and Kc values yielded upper state constants including the band centre which are more accurate than previously reported. The rms deviation of the upper state fit is 0.00045 cm−1. Improved ground state rovibrational constants were also determined from the fit of 1247 ground state combination differences (GSCD) from the presently-assigned infrared transitions of the ν12 band of C2D4. The rms deviation of the GSCD fit is 0.00049 cm−1. In the rovibrational analysis, local frequency perturbations were not detected even at high J and Ka values. The calculated inertial defect Δ12 is 0.32551 ± 0.00001 μÅ2. The line intensities of the individual transitions in the ν12 band were measured and the band strength of 39.8 ± 2.0 cm−2 atm−1 was derived for the ν12 band of C2D4.  相似文献   

16.
A high-resolution (0.002 cm−1) infrared absorption spectrum of methylene fluoride-d2 (CD2F2) of the lowest fundamental mode ν4 in the region from 460 to 610 cm−1 has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 3500 transitions have been assigned in this B-type band centered at 521.9 cm−1. The data have been combined with upper state pure rotational measurements in a weighted least-squares fit to obtain molecular constants for the upper state resulting in an overall standard deviation of 0.00018 cm−1. Accurate value for the band origin (521.9578036 cm−1) has been obtained and inclusion of transitions with very high J (?60) and Ka (?34) values has resulted in improved precision for sextic centrifugal distortion constants, in particular DK, HKJ, and HK.  相似文献   

17.
We present new investigations of the millimeter wave spectra of the two lowest-energy conformers of glycine (NH2CH2COOH). Measurements of these spectra have been carried out between 75 and 260 GHz using the millimeter-wave spectrometer in Kharkov. The new data set involves rotational transitions with J up to 44 and Ka up to 15 for conformer I and transitions with J up to 43 and Ka up to 14 for conformer II. This represents a more than twofold expansion both in the frequency range and J quantum-number range in comparison with previous investigations. The improved sets of spectroscopic parameters obtained for both conformers provide accurate transition frequencies for the key lines necessary for radio astronomy searches for interstellar glycine.  相似文献   

18.
The ground vibrational state rotational spectrum of 2,3-difluorobenzonitrile has been reinvestigated in the frequency range 40.0-99.0 GHz. High J and K−1 (J ? 62 and K−1 ? 20) transitions have been measured and analyzed to determine accurate rotational and centrifugal distortion constants. Finally, the experimental values were compared with the corresponding values computed at the DFT-B3PW91/6-31g(d,p) level of theory. A very good agreement has been found.  相似文献   

19.
The 2,3-13C2 isotopomer of butadiene was synthesized, and its fundamental vibrational fundamentals were assigned from a study of its infrared and Raman spectra aided with quantum chemical predictions of frequencies, intensities, and Raman depolarization ratios. For two C-type bands in the high-resolution (0.002 cm−1) infrared spectrum, the rotational structure was analyzed. These bands are for ν11 (au) at 907.17 cm−1 and for ν12 (au) at 523.37 cm−1. Ground state and upper state rotational constants were fitted to Watson-type Hamiltonians with a full quartic set of centrifugal distortion constants and two sextic ones. For the ground state, A0 = 1.3545088(7) cm−1, B0 = 0.1469404(1) cm−1, and C0 = 0.1325838(2)  cm−1. The small inertial defects of butadiene and two 13C2 isotopomers, as well as for five deuterium isotopomers as previously reported, confirm the planarity of the s-trans rotamer of butadiene.  相似文献   

20.
The rotational spectrum of HClO4 has been observed in selected regions between 51.7 and 870 GHz. The molecule is a near spherical rotor with a moderately low barrier to internal rotation. The spectrum is characterized by strong μa, R-branch groupings with B + C = 5276.78 MHz. Although there are no E torsional states, the R-branches show three distinct groups of lines. There is a relatively tight cluster of symmetric rotor like transitions with K = 3n, a rather regular progression of transitions with K = 3n + 2 to high frequency and a less regular group of transitions with K = 3n + 1 to low frequency. Because the molecule is nearly spherical, the energy as a function of K is dominated by the K dependent solutions of the Mathieu equation. This unusual energy level distribution gives rise to numerous anomalous splittings and shifts due to avoided crossings within the K stacks as well as widely scattered μb transitions. The fitting procedure will be described and the effective parameters will be presented. Rotational transitions of excited torsional states at and above the top of the barrier and the vt = 2-0 far infrared spectrum have been assigned. The dipole moment and the quadrupole coupling constants have been determined. Structural implications will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号