首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ph2SiCl2 and PhMeSiCl2 react with Li2E (E = S, Se, Te) under formation of trimeric diorganosilicon chalcogenides (PhRSiE)3 (R = Ph: 1a-3a, R = Me: cis/trans-4a (E = S), cis/trans-5a (E = Se)). In case of E = S, Se dimeric four-membered ring compounds (PhRSiE)2 (R = Ph: 1b-2b, R = Me: cis/trans-4b (E = S), cis/trans-5b (E = Se)) have been observed as by-products. 1a-5b have been characterized by multinuclear NMR spectroscopy (1H, 13C, 29Si, 77Se, 125Te). Four- and six-membered ring compounds differ significantly in 29Si and 77Se chemical shifts as well as in the value of 1JSiSe.The molecular structures of 2a, 3a and trans-5a reported in this paper are the first examples of compounds with unfused six-membered rings Si3E3 (E = Se, Te). The Si3E3 rings adopt twisted boat conformations. The crystal structure of 3a reveals an intermolecular Te-Te contact of 3.858 Å which yields a dimerization in the solid state.  相似文献   

2.
The organo-tin compounds, Me2Sn(C5H4R-1)2 (R = Me (1), Pri (2), But (3), SiMe3 (4)) and Me2Sn(C5Me4R-1)2 (R = H (5), SiMe3 (6)), were prepared by the reaction of Me2SnCl2 with the lithium or sodium derivative of the corresponding cyclopentadiene. Compounds 1-6 have been characterized by multinuclear NMR spectroscopy (1H, 13C, 119Sn). In addition the molecular structures of 5 and 6 were determined by single crystal X-ray diffraction studies. The transmetalation reaction of 1-6 with ZrCl4 or [NbCl4(THF)2] gave the corresponding metallocene complexes in high yields.  相似文献   

3.
Bimetallic alkylidene complexes of tungsten (R′O)2(ArN)WCH-SiR2-CHW(NAr)(OR′)2 (R = Me (1), Ph (2)) and (R′O)2(ArN)WCH-SiMe2SiMe2-CHW(NAr)(OR′)2 (3) (Ar = ; R′ = CMe2CF3) have been prepared by the reactions of divinyl silicon reagents R2Si(CHCH2)2 with known alkylidene compounds R′′-CHMo(NAr)(OR′)2. (R′′ = But, PhMe2C) Complexes 1-3 were structurally characterized. Ring opening metathesis polymerization (ROMP) of cyclooctene using compounds 1-3 as initiators led to the formation of high molecular weight polyoctenamers with predominant trans-units content in the case of 1 and 3 and predominant cis-units content in the case of 2.  相似文献   

4.
The synthesis and crystal structures of 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-thione, (R3Sn)2(dmit), 1, and 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-one, (R3Sn)2(dmio), 2, compounds are reported. Compounds, (1 or 2: R = Ph or cyclohexyl, Cy), have been obtained from reaction of R3SnCl with Cs2dmit or Na2dmio. The presence of the two tin centres in (2: R = Ph) is shown in the 13C NMR spectrum by the couplings of both Sn atoms to the dmio olefinic carbons with J values of 29.4 and 24.7 Hz. The δ119 Sn values for (1: R = Ph) and (2: R = Ph) differ by about 30 ppm, values being −20.7 and −50.1 ppm, respectively, in CDCl3 solution. X-ray structure determinations for (1: R = Ph) and (2: R = Ph or Cy) reveal the compounds to have 4-coordinate, distorted tetrahedral tin centres. The dithiolato ligands, dmit and dmio, act as bridging ligands, in contrast to their chelating roles in R2Sn(dmit) and R2Sn(dmio). A further difference between R2Sn(dmit) and R2Sn(dmio), on one hand, and 1 and 2 on the other, is that intermolecular Sn-S and Sn-O interactions are absent in 1 and 2. However, weak intermolecular hydrogen bonding interactions are found in (1: R = Ph) [C-H?π] and in (2: R = Ph) [C-H?π and C-H?O].  相似文献   

5.
The reaction of the anion [(tBuP)3As] (1) with Me2SiCl2 results in nucleophilic substitution of the Cl anions, giving the di- and mono-substituted products [Me2Si{As(PtBu)3}2] (3a) and [Me2Si(Cl){As(PtBu)3}] (3b). Analogous reactions of the pre-isolated [(CyP)4As] anion (2) (Cy = cyclohexyl) with Me2SiCl2 produced mixtures of products, from which no pure materials could be isolated. However, reaction of 2 [generated in situ from CyPHLi and As(NMe2)3] gives the heterocycle [(CyP)3SiMe2] (4). The X-ray structures of 3a and 4 are reported.  相似文献   

6.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

7.
New stable heteroleptic germanium(II) and tin(II) compounds [(SiMe3)2N-E14-OCH2CH2NMe2]n (E14 = Ge, n = 1 (1), Sn, n = 2 (2)) have been synthesized and their crystal structures have been determined by X-ray diffraction analysis. While compound 1 is monomer stabilized by intramolecular Ge ← N coordination, compound 2 is associated to dimer via intermolecular dative Sn ← O interactions.  相似文献   

8.
9.
New stable azido derivatives of divalent germanium and tin [N3-E14-OCH2CH2NMe2]2 (E14 = Ge (1), Sn (2)) have been synthesized by use of the β-dimethylaminoethoxy ligand that forms the intramolecular E14 ← N coordination bond. Their crystal structures have been determined by X-ray diffraction analysis. Compounds 1 and 2 are centrosymmetric dimers via two intermolecular dative E14 ← O interactions with essentially linear monodentate azide ligands. The dominant canonical form of the E14-azide moieties is E14-N-NN.  相似文献   

10.
Treatment of PhMe2SiCH2GeMe3 (1) with t-BuLi followed by addition of Me3ECl, E = Sn, Pb, results in the formation of phenylsilyl(germyl)stannyl- and phenylsilyl(germyl)plumbyl-methanes, PhMe2Si(Me3Ge)(EMe3)CH, E = Sn (2), Pb (3). The thermal reaction of 1, 2 and 3 with Cr(CO)6 yields the corresponding aryl-Cr(CO)3 analogs, {(η6-C6H5)Cr(CO)3}Me2Si(Me3Ge)CH2 (4) and {(η6-C6H5)Cr(CO)3}Me2Si(Me3Ge)(EMe3)CH, E = Sn (5), Pb (6). The thermal treatment of 2 with Cr(CO)6 in a wet THF/di-n-butyl ether mixture results in the formation of the arenechromiumtricarbonyl silanol {(η6-C6H5)Cr(CO)3}Me2SiOH (7) which exhibits amphiphilic character, forming H-bonded chains in the solid state in a head-to-head arrangement of the areneCr(CO)3 units.  相似文献   

11.
The reactions of the trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-h: R′ = Ph, 1a: R = H, 1b: R = Me, 1c: R = Et, 1d: R = iPr, 1e: R = tBu, 1f: R = Ph, 1g: R = 2,4,6-Me3C6H2 (Mes), 1h: R = 2,4,6-(Me2CH)3C6H2 (Tip); 1i: R = R′ = Mes) with lithium metal in tetrahydrofuran (THF) at −78 °C and in a mixture of THF/diethyl ether/n-pentane in a volume ratio 4:1:1 at −110 °C lead to mixtures of numerous compounds. Dependent on the substituents silyllithium derivatives (Me3SiO)RR′SiLi (2b-i), Me3SiO(RR′Si)2Li (3a-g), Me3SiRR′SiLi (4a-h), (LiO)RR′SiLi (12e, 12g-i), trisiloxanes (Me3SiO)2SiRR′ (5a-i) and trimethylsiloxydisilanes (6f, 6h, 6i) are formed. All silyllithium compounds were trapped with Me3SiCl or HMe2SiCl resulting in the following products: (Me3SiO)RR′SiSiMe2R″ (6b-i: R″ = Me, 7c-i: R″ = H), Me3SiO(RR′Si)2SiMe2R″ (8a-g: R″ = Me, 9a-g: R″ = H), Me3SiRR′SiSiMe2R″ (10a-h: R″ = Me, 11a-h: R″ = H) and (HMe2SiO)RR′SiSiMe2H (13e, 13g-i). The stability of trimethylsiloxysilyllithiums 2 depends on the substituents and on the temperature. (Me3SiO)Mes2SiLi (2i) is the most stable compound due to the high steric shielding of the silicon centre. The trimethylsiloxysilyllithiums 2a-g undergo partially self-condensation to afford the corresponding trimethylsiloxydisilanyllithiums Me3SiO(RR′Si)2Li (3a-g). (Me3)Si-O bond cleavage was observed for 2e and 2g-i. The relatively stable trimethylsiloxysilyllithiums 2f, 2g and 2i react with n-butyllithium under nucleophilic butylation to give the n-butyl-substituted silyllithiums nBuRR′SiLi (15g, 15f, 15i), which were trapped with Me3SiCl. By reaction of 2g and 2i with 2,3-dimethylbuta-1,3-diene the corresponding 1,1-diarylsilacyclopentenes 17g and 17i are obtained.X-ray studies of 17g revealed a folded silacyclopentene ring with the silicon atom located 0.5 Å above the mean plane formed by the four carbon ring atoms.  相似文献   

12.
Reactions of [Pt2(μ-Cl)2(C8H12OMe)2] (1) (C8H12OMe = 8-methoxy-cyclooct-4-ene-1-yl) with various anionic chalcogenolate ligands have been investigated. The reaction of 1 with Pb(Spy)2 (HSpy = pyridine-2-thiol) yielded a binuclear complex [Pt2(Spy)2(C8H12OMe)2] (2). A trinuclear complex [Pt3(Spy)4(C8H12OMe)2] (3) was isolated by a reaction between 2 and [Pt(Spy)2]n. The reaction of 1 with HSpy in the presence of NaOMe generated 2 and its demethylated oxo-bridged tetranuclear complex [Pt4(Spy)4(C8H12-O-C8H12)2] (4). Treatment of 1 with ammonium diisopropyldithiophosphate completely replaced C8H12OMe resulting in [Pt(S2P{OPri}2)2] (5), whereas non-rigid 5-membered chelating ligand, Me2NCH2CH2E, produced mononuclear complexes [Pt(ECH2CH2NMe2)(C8H12OMe)] (E = S (6), Se (7)). These complexes have been characterized by elemental analyses, NMR (1H, 13C{1H}, 195Pt{1H}) and absorption spectroscopy. Molecular structures of 2, 3, 4, 5 and 7 were established by single crystal X-ray diffraction analyses. Thermolysis of 2, 6 and 7 in HDA gave platinum nanoparticles.  相似文献   

13.
A series of organotin compounds bearing two intramolecular N → Sn coordination bonds RSn(OCH2CH2NMe2)2Cl (R = Me (4), n-Bu (5), Mes (6)) were synthesized in good yields. These compounds as well as 2 (R = Ph) react with PhSnCl3 to give redistribution products RPhSnCl2 and (Me2NCH2CH2O)2SnCl2 (3). The direction of redistribution reactions is reverse to Kocheshkov reaction. DFT calculations have shown that the driving force of the reactions is formation of intramolecular N → Sn coordination bonds in (RO)2SnCl2 (3), the Lewis acid stronger than RSn(OR)2Cl (2, 4-6). The mechanism of the redistribution reaction between 2 and PhSnCl3 consists of two steps: (1) initial exchange of OCH2CH2NMe2 and Cl to give PhSn(OCH2CH2NMe2)Cl2 (7) followed by (2). Ph and OCH2CH2NMe2 exchange.  相似文献   

14.
The reaction of fluorosilanes XYSiF2 (X = Y = F; X = F, Y = Ph; X = Ph, Y = Me) with diethanolamines and their O-trimethylsilyl derivatives affords novel Si-fluoro substituted quasisilatranes 3, 5 and 9. These compounds were characterized by the multinuclear NMR spectroscopy and X-ray diffraction analysis. Experimental and theoretically calculated electron density distribution functions in crystal structure of 9 have shown that the N → Si coordination bond corresponds to polar bond with pronounced ionic contribution. Calculated N → Si bond order in the compound 9 does not exceed 1/3 of the normal Si-N bond. A strong N → Si coordination bond exists in compounds 3, 5 and 9 the length of which varies in the range 1.98-2.175 Å.  相似文献   

15.
The hydrosulfido complexes CpRu(L)(L′)SH react with one equivalent of O-alkyl oxalyl chlorides (ROCOCOCl) to form the corresponding O-alkylthiooxalate complexes CpRu(L)(L′)SCOCO2R (L = L′ = PPh3 (1), (2); L = PPh3, L′ = CO (3); R = Me (a), Et (b)). The reactions of the hydrosulfido complexes with half equivalent of oxalyl chloride produce the bimetallic complexes [CpRu(L)(L′)SCO]2 (L = L′ = PPh3 (4), (5); L = PPh3, L′ = CO (6)). The crystal structures of CpRu(PPh3)2SCOCO2Me (1a) and CpRu(dppe)SCOCO2Et (2b) are reported.  相似文献   

16.
To study the Ru-M interactions and their effects on 31P NMR, complexes [Ru(CO)3(Ph2Ppy)2] (py = pyridine) (1) and [Ru(CO)3(Ph2Ppy)2MCl2] (M = Zn, 2; Cd, 3; Hg, 4) were calculated by density functional theory (DFT) PBE0 method. Moreover, the PBE0-GIAO method was employed to calculate the 31P chemical shifts in complexes. The calculated 31P chemical shifts in 1-3 follow 2 > 3 > 1 which are consistent to experimental results, proving that PBE0-GIAO method adopted in this study is reasonable. This method is employed to predict the 31P chemical shift in designed complex 4. Compared with 1, the 31P chemical shifts in 2-4 vary resulting from adjacent Ru-M interactions. The Ru → M or Ru ← M charge-transfer interactions in 2-4 are revealed by second-order perturbation theory. The strength order of Ru → M interactions is the same as that of the P-Ru → M delocalization with Zn > Cd > Hg, which coincides with the order of 31P NMR chemical shifts. The interaction of Ru → M, corresponding to the delocalization from 4d orbital of Ru to s valence orbital of M2+, results in the delocalization of P-Ru → M, which decreases the electron density of P nucleus and causes the downfield 31P chemical shifts. Except 2, the back-donation effect of Ru ← M, arising from the delocalization from s valence orbital of M2+ to the valence orbital of Ru, is against the P-Ru → M delocalization and results in the upfield 31P chemical shifts in 4. Meanwhile, the binding energies indicate that complex 4 is stable and can be synthesized experimentally. However, as complex [Ru(CO)3(Ph2Ppy)2HgCl]+5 is more stable than 4, the reaction of 1 with HgCl2 only gave 5 experimentally.  相似文献   

17.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

18.
Reactions of 1,4-dibromo-2,5-difluorobenzene with two equivalents of lithium diisopropylamide at low temperature (T < −90 °C) followed by a quench with a slight excess of ClPPh2 afford 1,4-dibromo-2,5-bis(diphenylphosphino)-3,6-difluorobenzene (1) in good yields. Reacting 1 with two equivalents of BuLi followed by a quench with a slight excess of ClPR2 yield novel 1,2,4,5-tetrakis(phosphino)-3,6-difluorobenzenes 1,4-(PPh2)2-2,5-(PR2)2-C6F2 (R = Ph (2a); R = iPr (2b); R = Et (2c)) in moderate yields. Compounds 1 and 2a-c were characterized by multinuclear NMR spectroscopy and elemental analyses. In addition, molecular structures of 2a-c have been determined by single crystal X-ray crystallography. Phosphorus atoms of PPh2/PR2 substituents in 2a-c are displaced from the plane of the central phenyl ring due to steric interactions with neighboring groups.  相似文献   

19.
Diorganodiselenide [2-(Et2NCH2)C6H4]2Se2 (1) was obtained by hydrolysis/oxidation of the corresponding [2-(Et2NCH2)C6H4]SeLi derivative. The treatment of [2-(Et2NCH2)C6H4]2Se2 with elemental sodium in THF resulted in [2-(Et2NCH2)C6H4]SeNa (2). Reactions between alkali metal selenolates [2-(R2NCH2)C6H4]SeM′ (R = Me, Et; M′ = Li, Na) and MCl2 (M = Zn, Cd) in a 2:1 molar ratio resulted in the [2-(R2NCH2)C6H4Se]2M species [R = Me, M = Zn (3), Cd (4); R = Et, M = Zn (5), Cd (6)]. The new compounds were characterized by multinuclear NMR (1H, 13C, 77Se, 113Cd) and mass spectrometry. The crystal and molecular structures of 1, 3 and 4 revealed monomeric species stabilized by N → Se (for 1) and N → M (for 3 and 4) intramolecular interactions.  相似文献   

20.
Two new charge-transfer salts, [CpFeCpCH2N(CH3)3]4[PMo12O40] · CH3CN (1) and [CpFeCpCH2N(CH3)3]4[GeMo12O40] (2), were synthesized by the traditional solution synthetic method and their structures were determined by single-crystal X-ray analysis. Salt 1 belongs to the triclinic space group P1, and salt 2 belongs to the triclinic space group . There exist the complex interactions of the cationic ferrocenyl donor and Keggin polyanion in the solid state. The solid state UV-Vis diffuse reflectance spectra indicate the presence of a charge-transfer band climbing from 450 nm to well beyond 900 nm for 1, a charge-transfer band from 460 to 850 nm with λmax = 630 nm for 2.The EPR spectra of salts 1 and 2 at 77 K show a signal at g = 2.0048 and 1.9501, respectively, ascribed to the delocalization of one electron in reduced Keggin ion in salt 1 and the MoVI in [GeMo12O40]4− is partly reduced to MoV owing to the charge-transfer transitions taking place between the ferrocenyl donors and the POM acceptors. The two compounds were also characterized by IR spectroscopy and cyclic voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号