首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of heteroligated (salicylaldiminato)(β-enaminoketonato)titanium complexes of the general formula [3-Bu(t)-2-OC(6)H(3)CH==N(C(6)F(5))][PhN==C(CF(3))CHC(R)O]TiCl(2) (3a: R==Ph, 3b: R==C(6)H(4)Ph(p), 3c: R==C(6)H(4)Ph(o), 3d: R = 1-naphthyl, 3e: R = C(6)H(4)F2(2,6), 3f: R = C(6)H(4)Cl2(2,5), 3g: R==C(6)F4(2,3,5,6)OMe(4)) were synthesized. The structure of complexes 3d, 3f-g were determined by single crystal X-ray diffraction analysis. The X-ray crystallographic analysis indicated these complexes adopted a distorted octahedral geometry around the titanium center. Upon activation with modified methylaluminoxane, complexes 3a-g exhibited moderate to good catalytic activity for norbornene (NB) vinyl addition polymerization, producing moderate molecular weight polynorbornenes under mild conditions. The introduction of electron-withdrawing groups can greatly enhance the catalytic activity. Significantly, the heteroligated titanium complexes displayed greatly improved activity for vinyl addition polymerization of NB compared to homoligated counterparts, which may stem from the suitable combinations of electronic and steric effects.  相似文献   

2.
A series of nickel(II) complexes bearing two nonsymmetric bidentate β-ketoiminato chelate ligands have been prepared, and the structures of complexes [(2,6-Me2C6H3)NC(CH3)C(H)C(Ph)O]2Ni (4a) and [(2,6-Me2C6H3)NC(CH3)C(H)C(CF3)O]2Ni (4c) have been confirmed by X-ray crystallographic analysis. These nickel(II) complexes were investigated as catalysts for the vinylic polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display very high activities and produce high molecular weight polymers. Catalytic activity of up to 1.16 × 104 kg/molNi · h and the viscosity-average molecular weight of polymer of up to 870 kg/mol were observed. Catalyst activity, polymer yield, and polymer molecular weight could be controlled over a wide range by the variation of the reaction parameters such as Al/Ni molar ratio, norbornene/catalyst molar ratio, monomer concentration, polymerization reaction temperature and time.  相似文献   

3.
Neutral η1-benzylnickel carbene complexes, [Ni(η1-CH2C6H5)(IiPr)(PMe3)(Cl)] (3) (IiPr = 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene) and [Ni(η1-CH2C6H5)(SIiPr)(PMe3)(Cl)] (4) (SIiPr = 1,3-bis-(2,6-diisopropylphenyl)imidazolin-2-ylidene), were prepared by the reaction between [Ni(η3-CH2C6H5)(PMe3)(Cl)] and an equivalent amount of the corresponding free N-heterocyclic carbene. The preparation of η3-benzylnickel carbene complexes, [Ni(η3-CH2C6H5)(IiPr)(Cl)] (5) and [Ni(η3-CH2C6H5)(SIiPr)(Cl)] (6) were carried out by the abstraction of PMe3 from 3 and 4 by the treatment of B(C6F5)3. The treatment of AgX on 5 and 6 produced the anion-exchanged complexes, [Ni(η3-CH2C6H5)(NHC)(X)] (7, NHC = IiPr, X = O2CCF3; 8, NHC = IiPr, X = O3SCF3; 9, NHC = SIiPr, X = O2CCF3; 10, NHC = SIiPr, X = O3SCF3). The solid state structures of 3 and 10 were determined by X-ray crystallography. The η3-benzyl complexes of IiPr (5, 7, and 8) alone, in the absence of any activators such as borate and MAO, showed good catalytic activity towards the vinyl-type norbornene polymerization. The catalyst was thermally robust and the activity increases as the temperature rises to 130 °C.  相似文献   

4.
Dinuclear complexes of palladium(II), containing two bridging halogen (Cl or Br) ligands, [NnBu4]2[(X5C6)2Pd(μ-Cl)2Pd(C6X5)2] and [(X5C6)(L)Pd(μ-Y)2Pd(C6X5)(L)] (X = F, Cl; Y = Cl, Br), readily react with cyclopentadienylthallium, C5H5Tl, to give the corresponding air stable half-sandwich, pseudo-trigonal η5-cyclopentadienylpalladium complexes, [NnBu4][(η5-C5H5)Pd(C6X5)2] (X = F 1, Cl 2) and (η5-C5H5)Pd(C6X5)(L) (X = F, L = CNBut3, PPh34, PMe2Ph 5, PEt36, AsPh37, SbPh38; X = Cl, L = PMe2Ph 9, PEt310), respectively. With tetraphenylcyclopentadienylthallium, C5Ph4HTl or pentabenzylcyclopentadienylthallium, C5Bn5Tl (Bn = CH2Ph) the air stable half-sandwich complexes (η5-C5Ph4H)Pd(C6F5)(AsPh3), 12 and (η5-C5Bn5)Pd(C6F5)(AsPh3), 13 are synthesized accordingly. The molecular structures were verified by NMR-spectroscopy, X-ray crystallography (7, 12, 13) and electron impact-mass spectrometry (EI-MS). The precatalysts 4 and 7 can be activated with methylalumoxane (MAO) for the homopolymerization of norbornene (NB) and 5-ethylidene-2-norbornene (ENB) and for the copolymerization of NB with 5-vinyl-2-norbornene (VNB) or ENB with activities of more than 106 gPNB/(molPd·h). The higher activity of 7/MAO over 4/MAO towards NB homopolymerization was reversed when the olefin-substituted VNB or ENB were added. Then, the more strongly bound PPh3 ligand of 4 (versus AsPh3 of 7) can compete with the olefin functionality of VNB or ENB and assume a directing role for the insertion of the ring double bond. As a consequence 4/MAO shows almost the same activity in NB and ENB homopolymerization.  相似文献   

5.
Transition Metal Chemistry - Two copper(II) complexes with ligands derived from β-amino acids, 2-(1-aminocyclohexyl)acetic acid L1 and 2-(1-amino-4-(tert-butyl)cyclohexyl)acetic acid L2, were...  相似文献   

6.
A series of novel titanium complexes bearing tridentate β-enaminoketonato chelating ligands of type, [R(2)NC(CF(3))C(H)CR(1)O]TiCl(3) (2a: R(1) = Ph, R(2) = -C(6)H(4)OMe(o); 2b: R(1) = Ph, R(2) = -C(9)H(6)N; 2c: R(1) = Ph, R(2) = -C(6)H(4)SMe(o); 2d: R(1) = Ph, R(2) = -C(6)H(4)SPh(o); 2e: R(1) = (t)Bu, R(2) = -C(6)H(4)SPh(o)) and [R(2)NC(R(1))C(H)C(CF(3))O]TiCl(3) (2f: R(1) = Ph, R(2) = -C(6)H(4)PPh(2)(o)) were prepared from TiCl(4) by treating with one equiv of deprotonated ligands in toluene. The reaction of 1a with equivalent of TiCl(4) in THF afforded another complex, C(6)H(4)OMeNC(CF(3))C(H)CPhO]TiCl(3)(thf) (3a), in addition to formation of the dichloride complex 4a, [C(6)H(4)(OMe)NC(CF(3))C(H)CPhO](2)TiCl(2). After deprotonation by alkali-metal hydride at -78 °C in diethyl ether, ligand 1a could react with 0.5 equiv of TiCl(4) to form the exclusive and clean dichloride complex 4a in high yield. These complexes were identified by NMR and mass spectra as well as elemental analyses. X-ray diffraction studies on these new trichloride complexes revealed a distorted octahedral coordination of the central metal with three chlorine atoms in a mer disposition. Dichloride complex 4a also adopted a distorted octahedral geometry around the titanium center. Two chlorine atoms are situated in the cis position, as seen in the bond angles for Cl(1)-Ti-Cl(2) (92.64(7)°). The O atom on the heterocyclic group was not coordinated with Ti. When activated by modified methylaluminoxane (MMAO), complexes 2a-e exhibited moderate to high activity towards ethylene (co)polymerization, giving relatively high molecular weight polymers with unimodal molecular weight distribution.  相似文献   

7.
New homoleptic zinc(II) complexes, [Zn(L)2], where L = methyl-3-hydroxy-(3-pyridyl)-2-propenedithioate L1 1, and methyl-3-hydroxy-(4-pyridyl)-2-propenedithioate L2 2, have been synthesized and characterized by elemental (C, H, and N) analysis, ESI-MS, and (IR, UV–vis, NMR) spectroscopy; the structure of 1 has been deduced by X-ray crystallography. The DNA binding and cleavage activity of the complexes have been studied. The cleavage potential of pBR322 DNA by 1 and 2 has been checked. Complex 1, which contains nitrogen of the pyridine group in the 3-position enhances DNA cleavage potential in the presence of ascorbic acid; however, the complex is protective against DNA cleavage in the presence of DMSO or H2O2. Also, 1 causes cytotoxicity against the MCF-7 breast cancer cell line. The efficient cytotoxic activity and DNA cleavage ability of 1 in the presence of ascorbic acid shows its potential anticancer properties and the need for further investigations of its potential as an anticancer drug.  相似文献   

8.
Two nickel(II) complexes (A and B) bearing β-iminoamine ligands, [2-(ArNCH)-C6H4-NMe2] (La, Ar = 2,6-i-Pr2C6H3; Lb, Ar = 2,6-Me2C6H3), were synthesized and characterized by elemental analyses and 1H NMR. X-ray crystal structure of complex B reveals that the six-membered chelate ring adopts a envelope conformation, with nickel(II) atom deviating from the plane of backbone aromatic ring by 1.164 Å. In the presence of methylaluminoxane (MAO), both complexes showed moderate activities of 105 g molNi−1 h−1 for norbornene polymerization. β-iminoamine Ni(II)/MAO catalysts gave unimodal polymers (Mw, 3.16-8.02 × 10g/mol) with a relatively narrow MWD (Mw/Mn, 1.59-2.14), indicative of single-site catalyst behavior. The obtained polymers are vinyl-type polynorbornenes (PNBs), which are soluble in common solvents such as toluene, cyclohexane and dichlorobenzene.  相似文献   

9.
A series of zirconium complexes (2c, 2d, 2f, 2g, 2h, 2i) containing symmetrical or unsymmetrical β-diketiminate ligands were synthesized by the reaction of ZrCl4 · 2THF with lithium salt of the corresponding ligand in 1:2 molar ratio. X-ray crystal structures reveal that complexes 2d and 2g adopt distorted octahedral geometry around the zirconium center. These complexes showed moderate activities for ethylene polymerization, when methylaluminoxane (MAO) was used as cocatalyst. The steric and electronic effects of the substituents at the phenyl rings had considerable influence on the catalytic activities of the metal complex, as well as the molecular weights and molecular weight distributions (MWD) of produced polymers. Introduction of electron-withdrawing CF3 group to phenyls in the ligand led to a significant increase of catalytic activities, and complex 2f (p-CF3) exhibited the highest catalytic activity of 7.45 × 105 g PE/mol-Zr · h among the investigated complexes. Complexes 2a-d could produce ultra-high molecular weight polyethylenes (UHMWPE) that were hardly dissolvable in decahydronaphthalene or 1,2-dichlorobenzene under the molecular weight measurement conditions. Nevertheless, polyethylenes with broad MWD could be afforded by complexes 2g-i, which was probably due to the introduction of bulky unsymmetrical ligands leading to the formation of multi active species under polymerization conditions. High-temperature 13C NMR data indicate the linear structure of obtained polyethylenes.  相似文献   

10.
New ruthenium(II) complexes containing η6-arene-η1-pyrazole ligands were synthesized and characterized by elemental analysis and spectroscopic methods. In addition, the molecular structure of dichloro-3,5-dimethyl-1-(pentamethylbenzyl)-pyrazole–ruthenium(II), [Ru]L3b, was determined by X-ray diffraction studies. These complexes were applied in the transfer hydrogenation of acetophenone by isopropanol in the presence of potassium hydroxide. The activities of the catalysts were monitored by NMR.  相似文献   

11.
A series of titanium complexes [(Ar)NC(CF3)CHC(R)O]2TiCl2 (4b: Ar = -C6H4OMe(p), R = Ph; 4c: Ar = -C6H4Me(p), R = Ph; 4d: Ar = -C6H4Me(o), R = Ph; 4e: Ar = α-Naphthyl, R = Ph; 4f: Ar = -C6H5, R = t-Bu; 4g: Ar = -C6H4OMe(p); R = t-Bu; 4h: Ar = -C6H4Me(p); R = t-Bu; 4i: Ar = -C6H4Me(o); R = t-Bu) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4b, 4c and 4h adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4b-c and 4f-i are active catalysts for ethylene polymerization and ethylene/norbornene copolymerization, and produce high molecular weight polyethylenes and ethylene/norbornene alternating copolymers. In addition, the complex 4c/MMAO catalyst system exhibits the characteristics of a quasi-living copolymerization of ethylene and norbornene with narrow molecular weight distribution.  相似文献   

12.
Reaction of quinolin-8-amine with 1H-pyrrole-2-carbaldehyde or 5-tert-butyl-1H-pyrrole-2-carbaldehyde catalyzed by HCO2H forms N-((1H-pyrrol-2-yl)methylene)quinolin-8-amine (≡ HL, 3a) or N-((5-tert-butyl-1H-pyrrol-2-yl)methylene)quinolin-8-amine (≡ HL′, 3b). Treatment of 3a and 3b respectively with AlMe3 or AlEt3 in toluene affords corresponding aluminum complexes LAlMe2 (4a), L′AlMe2 (4b) and LAlEt2 (4c). Reaction of 3a and 3b with an equivalent of ZnEt2 in toluene generates L2Zn and L′2Zn, respectively. A related compound N-((1H-pyrrol-2-yl)methylene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)benzenamine (≡ HL″, 7) was prepared by reaction of 2-(3,5-dimethyl-1H-pyrazol-1-yl)benzenamine with 1H-pyrrole-2-carbaldehyde in the presence of HCO2H. Reaction of 7 with AlMe3 gives L″2AlMe (8), and with ZnEt2 yields L″2Zn (9). All new compounds were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 4b, 5b and 8 were additionally characterized by single crystal X-ray diffraction analyses. Complexes 4a-4c, and 8 were proved to be active catalysts for the ring-opening polymerization (ROP) of ?-caprolactone (?-CL) in the presence of BnOH. The kinetic study of the polymerization reactions catalyzed by 4a and 8 was performed.  相似文献   

13.
Eight pairs of cis–trans isomeric homoleptic platinum(II) complexes based on N-alkyl- or aryl-substituted 2,2′-biimidazole ligands were synthesized, and their photophysical properties were investigated. The cis and trans isomers readily interconvert at slightly elevated temperature, implying that the activation barrier for this process is low. Single crystal X-ray diffraction analysis revealed that the complexes have an ideal square-planar geometry. Their UV–Vis spectra showed lower energy absorption bands in the range of 345–378 nm, which are assigned to the typical MLCT mixed with LC transitions. In frozen glass solution at 77 K and also in the powder state, these complexes exhibit green emission ranging from 440 to 540 nm with photoluminescence quantum yields of 3.3–24.4%. The emitting excited state is dominated by 3ππ* character with some contributions from 3MLCT according to the excitation spectra.  相似文献   

14.
The synthesis, structure, and spectroscopic signatures of a series of four-coordinate iron(II) complexes of β-ketoiminates and their zinc(II) analogues are presented. An unusual five-coordinate iron(II) triflate with three oxygen bound protonated β-ketoimines is also synthesized and structurally characterized. Single-crystal X-ray crystallographic analysis reveals that the deprotonated bis(chelate)metal complexes are four-coordinate with various degrees of distortion depending on the degree of steric bulk and the electronics of the metal center. Each of the high-spin iron(II) centers exhibits multiple electronic transitions including ligand π to π*, metal-to-ligand charge transfer, and spin-forbidden d-d bands. The (1)H NMR spectra of the paramagnetic high-spin iron(II) centers are assigned on the basis of chemical shifts, longitudinal relaxation times (T(1)), relative integrations, and substitution of the ligands. The electrochemical studies support variations in the ligand strength. Parallel mode EPR measurements for the isopropyl substituted ligand complex of iron(II) show low-field resonances (g > 9.5) indicative of complex aggregation or crystallite formation. No suitable solvent system or glassing mixture was found to remedy this phenomenon. However, the bulkier diisopropylphenyl substituted ligand exhibits an integer spin signal consistent with an isolated iron(ii) center [S = 2; D = -7.1 ± 0.8 cm(-1); E/D = 0.1]. A tentative molecular orbital diagram is assembled.  相似文献   

15.
Summary -Ketooxime [RC(O)C(NOH)R] (R = Me or Ph) ligands (HL) react with [Ru(PPh3)3Cl2] in refluxing EtOH to yield [Ru(PPh3)2(L)2] complexes. For R = Me, one isomer was obtained, while two isomers were isolated when R = Ph, due to a bulk effect. The complexes are diamagnetic and absorb intensely in the vis. region due to MLCT transitions. In MeCN and CH2Cl2 solution, RuII-RuIII oxidation occurs in the 0.69–0.92 V versus s.c.e. range. The oxidation potential depends on both the electronic nature of R and the stereochemistry of the complexes.  相似文献   

16.
Four heteronuclear complexes, [Ln2Co2L10(H2O)(phen)2] · n(H2O) (Ln = La 1, n = 2; Ln = Nd 2, Sm 3, Gd 4, n = 0; HL = α-methylacrylic acid, phen = 1,10-phenanthroline), have been synthesized and characterized by elemental analysis, IR and X-ray diffraction. The complexes with a discrete Co–Ln–Ln–Co tetranuclear molecule are isomorphous in the triclinic space group P 1 and Z = 1, in which all metal ions are bridged by bidentate α-methylacrylato groups. Magnetic measurements of 1, 2 and 3 show antiferromagnetic exchange interaction between paramagnetic centers.  相似文献   

17.
The synthesis of four N-benzoylthioureas containing pyrrole groups are described. The electrochemical behaviour of their copper(II) and nickel(II) complexes has been investigated in aprotic solvents by coulometry and by cyclic voltammetry which indicates that the electrochemical oxidation of copper complexes leads to the formation of CuII-benzylureate complexes. The oxidative polymerization of nickel complexes on platinum and a glassy carbon electrode, has been carried out in MeCN.The redox properties of the polymeric films formed have been examined by cyclic voltammetry. The films are catalytically active in the electroreduction of oxygen.  相似文献   

18.
《Mendeleev Communications》2023,33(2):184-187
Acetylacetonate palladium(II) complexes bearing pyridinyl imine ligands [Pd(acac)(L)]BF4 were synthesized via nitrile displacement in [Pd(acac)(MeCN)2]BF4 by the bidentate ligands L of type 2-C5H4N–CH=N–(CH2)nOMe or 2-C5H4N–CH=N–Ar. The structures of complexes were analyzed by X-ray diffractometry, NMR, and DFT. The complexes catalyze hydroamination of phenylacetylene with aniline to give the Markovnikov imine product as well as polymerization of norbornene.  相似文献   

19.
On the basis of an original protocol, we have synthesized several complexes of the type [Pd(η(3)-C(3)H(3)R(2))(LL')]ClO(4) (R = H, Me; L, L' = PPh(3), P(OEt)(3), 2,6-dimethylphenylisocyanide, t-butylisocyanide, 1,3-dimesitylimidazolidine, 1,3-dimesitylimidazol-2-ylidene). The complexes, some of which are completely new species, were fully characterized and their behaviour in solution was studied by means of (1)H NMR. The reactions of the complexes bearing the symmetric allyl moiety [Pd(η(3)-C(3)H(5))(LL')]ClO(4) with piperidine in the presence of the olefin dimethylfumarate were followed under kinetically controlled conditions. Formation of allyl-amine and of the palladium(0) derivatives [Pd(η(2)-dmfu)(LL'] was observed. The reaction rates k(2) proved to be strongly dependent on the ancillary ligand nature and allowed a direct comparison among the electronic characteristics of the ligands. The reactivity trend determined appears to be mainly influenced by the capability of the ancillary ligands in transferring electron density to the metal centre and consequently on the allyl fragment.  相似文献   

20.
A Schiff base ligands, N-{(1E,2E)-3-[4-(dimethylamino)phenyl]prop-2-en-1-ylidene}-1,10-phenanthrolin-5-amine(mpa) and (1E,2E)-3-[4-(dimethylamino)phenyl]acrylaldehyde9H-fluoren-9-ylidenehydrazone(mfh), have been synthesized from the reaction of 4,5-diazafluorenone-9-hydrazone and 5-amino-1,10-phenanthroline with 4-(dimethylamino)cinnamaldehyde. The Co(II) and Ru(II) complexes of the ligands were prepared and characterized. The metal-to-ligand ratio of the Co(II) complex was found to be 2: 1 and that of the Ru(II) complex was found to be 1: 1. The ligands and complexes have been characterized by FTIR, UV-visible, 1H NMR and fluorescence spectra, as well as, elemental analyses, TGA-DSC-DTG and mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号