首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of Ru3(CO)12 with diphosphazane monoselenides Ph2PN(R)P(Se)Ph2 [R = (S)-∗CHMePh (L4), R = CHMe2 (L5)] yield mainly the selenium bicapped tetraruthenium clusters [Ru44-Se)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] (1, 3). The selenium monocapped triruthenium cluster [Ru33-Se)(μsb-CO)(CO)72-P,P-Ph2PN((S)-∗CHMePh)PPh2}] (2) is obtained only in the case of L4. An analogous reaction of the diphosphazane monosulfide (PhO)2PN(Me)P(S)(OPh)2 (L6) that bears a strong π-acceptor phosphorus shows a different reactivity pattern to yield the triruthenium clusters, [Ru33-S)(μ3-CO)(CO)7{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (9) (single sulfur transfer product) and [Ru33-S)2(CO)52-P,P-(PhO)2PN(Me)P(OPh)2}{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (10) (double sulfur transfer product). The reactions of diphosphazane dichalcogenides with Ru3(CO)12 yield the chalcogen bicapped tetraruthenium clusters [Ru44-E)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] [R = (S)-∗CHMePh, E = S (6); R = CHMe2, E = S (7); R = CHMe2, E = Se (3)]. Such a tetraruthenium cluster [Ru44-S)2(μ- CO)(CO)8{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (11) is also obtained in small quantities during crystallization of cluster 9. The dynamic behavior of cluster 10 in solution is probed by NMR studies. The structural data for clusters 7, 9, 10 and 11 are compared and discussed.  相似文献   

2.
The complexes [ReCl2{N2C(O)Ph}(Hpz)(PPh3)2] (1) (Hpz = pyrazole), [ReCl2{N2C(O)Ph}(Hpz)2(PPh3)] (2), [ReCl2(HCpz3)(PPh3)][BF4] (3) and [ReCl2(3,5-Me2Hpz)3(PPh3)]Cl (4) were obtained by treatment of the chelate [ReCl22-N,O-N2C(O)Ph}(PPh3)2] (0) with hydrotris(1-pyrazolyl)methane HCpz3 (1,3), pyrazole Hpz (1,2), hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me2pz)3 (4) or dimethylpyrazole 3,5-Me2Hpz (4). Rupture of a C(sp3)-N bond in HCpz3 or HC(3,5-Me2pz)3, promoted by the Re centre, has occurred in the formation of 1 or 4, respectively. All compounds have been characterized by elemental analyses, IR and NMR spectroscopy, FAB-MS spectrometry, cyclic voltammetry and, for 1 · CH2Cl2 and 3, also by single crystal X-ray analysis. The electrochemical EL Lever parameter has been estimated, for the first time, for the HCpz3 and the benzoyldiazenide NNC(O)Ph ligands.  相似文献   

3.
Compounds of the type [Ag(PPh3)3(HL)] {H2xspa=3(aryl)-2-sulfanylpropenoic acids: x = Clp [3-(2-chlorophenyl)-], -o-mp [3-(2-methoxyphenyl)-], -p-mp [3-(4-methoxyphenyl)-], -o-hp [3-(2-hydroxyphenyl)-], -p-hp [3-(4-hydroxyphenyl-); H2cpa = 2-cyclopentylidene-2-sulfanylacetic acid} were synthesized and characterised by IR and NMR (1H 13C and 31P) spectroscopy and by FAB mass spectrometry. The crystal structures of [Ag(PPh3)3(HClpspa)], [Ag(PPh3)3(H-o-mpspa)], [Ag(PPh3)3(H-p-mpspa)] and [Ag(PPh3)3(Hcpa)] reveal the presence of discrete molecular units containing an intramolecular O-H···S hydrogen bond between the S atom and one of the O atoms of the COOH group. This intramolecular hydrogen bond remains in [Ag(PPh3)3(H-o-hpspa)]·EtOH and [Ag(PPh3)3(H-p-hpspa)] but in both cases polymeric structures are built on the basis of O-H···O interactions that involve the -OH substituent of the phenyl group of the sulfanylpropenoate fragment.  相似文献   

4.
5.
The coordination chemistry of the fluorovinyl substituted phosphines PPh2(Z-CFCFH) and PPh2(E-CClCFH) with K2MX4 (M = Pd, Pt; X = Cl, Br, and I) salts has been investigated resulting in the first reported palladium(II) and platinum(II) complexes of phosphines containing partially fluorinated vinyl groups. The complexes have been characterised by a combination of multinuclear [1H, 13C{1H}, 19F, 31P{1H}] NMR spectroscopy, and IR/Raman spectroscopy. The single-crystal X-ray structures of trans-[PdX2{PPh2(CFCFH)}2], X = Cl (1), Br (2), I (3), trans-[PdCl2{PPh2(CClCFH)}2] (4), cis-[PtX2{PPh2(CFCFH)}2], X = Cl (5), Br (6), trans-[PtI2{PPh2(CFCFH)}2] (7), and both cis- and trans-[PtCl2{PPh2(CClCFH)}2] (8), have been determined. Results obtained from spectroscopic and crystallographic data suggest that replacement of a β-fluorine by hydrogen, whilst reducing the steric demand of the ligand, has little effect on the electronic character of the ligand. The presence of a proton in the vinyl group results in short proton-halide secondary interactions in the solid state (d(H?X) = 2.72(3) for 1, and 2.92(5) Å for 2) forming an infinite chain ribbon motif.  相似文献   

6.
The paper presents a combined experimental and computational study of novel rhenium(III) complexes with the picolinate ligand – [ReCl2(pic)(PPh3)2] (1) and [ReBr2(pic)(PPh3)2] (2). Both complexes 1 and 2 have been characterised spectroscopically and structurally (by single-crystal X-ray diffraction). Complex 1 has been additionally studied by magnetic measurement. The magnetic behavior is characteristic of a mononuclear d4 low-spin octahedral Re(III) complex (3T1g ground state) and arises because of the large spin–orbit coupling (ζ = 2500 cm−1), which gives a diamagnetic ground state. DFT and time-dependent (TD)DFT calculations have been carried out for complex 1, and UV–vis spectra of the [ReX2(pic)(PPh3)2] compounds have been discussed on this basis.  相似文献   

7.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

8.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

9.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

10.
Complexes [MHCpBz(CO)2(PR3)] (R = CH3, M = Mo (1); M = W (2); R = Ph, M = Mo (3); CpBz = C5(CH2Ph)5) were prepared by thermal decarbonylation of the corresponding [MHCpBz(CO)3] in the presence of trimethyl- or triphenyl-phosphine. In solution the NMR spectra of all compounds show the presence of cis and trans isomers that interconvert at room temperature. In the solid state the molecular structures obtained for compounds 1 and 2 correspond to the trans isomers, while for 3 the cis isomer is present.The electrochemistry of [MoHCpBz(CO)2(PMe3)] (1), [MoHCpBz(CO)3] (5), [WHCpBz(CO)3] (6), [WCpBz(CO)3]2 (7), and [MCpBz(CO)3(CH3CN)]BF4 (8), is described. The cleavage of M-H bonds takes place upon oxidation or reduction. Cations [MCpBz(CO)2L(CH3CN)]+ form in solvent-assisted M-H bond breaking upon oxidation of [MHCpBz(CO)2L] (L = PMe3, CO). Reduction of [MHCpBz(CO)3] gives [MCpBz(CO)3] and H2. The presence of one PMe3 ligand lowers the reduction potential and precludes the observation of reduction waves.  相似文献   

11.
The reaction of HgCl2 and Te(R)CH2SiMe3 [R = CH2SiMe3 (1), Ph (2)] in ethanol yielded a mononuclear complex [HgCl2{Te(R)CH2SiMe3}2] (R = Ph, 3a; R = CH2SiMe3, 3b). The recrystallization of 3a or 3b from CH2Cl2 produced a dinuclear complex [Hg2Cl2(μ-Cl)2{Te(R)CH2SiMe3}2] (R = Ph, 4a; R = CH2SiMe3, 4b). When 3a was dissolved in CH2Cl2, the solvent quickly removed, and the solid recrystallized from EtOH, a stable ionic [HgCl{Te(Ph)CH2SiMe3}3]Cl·2EtOH (5a·2EtOH) was obtained. Crystals of [HgCl2{Te(CH2SiMe)2}]·2HgCl2·CH2Cl2 (6b·2HgCl2·CH2Cl2) were obtained from the CH2Cl2 solution of 3b upon prolonged standing. The complex formation was monitored by 125Te-, and 199Hg NMR spectroscopy, and the crystal structures of the complexes were determined by single crystal X-ray crystallography.  相似文献   

12.
A series of half-sandwich ruthenium(II) complexes containing κ3(N,N,N)-hydridotris(pyrazolyl)borate (κ3(N,N,N)-Tp) and the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane (PTA) [RuX{κ3(N,N,N)-Tp}(PPh3)2−n(PTA)n] (n = 2, X = Cl (1), n = 1, X = Cl (2), I (3), NCS (4), H (5)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)L][PF6] (L = NCMe (6), PTA (7)) have been synthesized. Complexes containing 1-methyl-3,5-diaza-1-azonia-7-phosphaadamantane(m-PTA) triflate [RuCl{κ3(N,N,N)-Tp}(m-PTA)2][CF3SO3]2 (8) and [RuX{κ3(N,N,N)-Tp}(PPh3)(m-PTA)][CF3SO3] (X = Cl (9), H (10)) have been obtained by treatment, respectively, of complexes 1, 2 and 5 with methyl triflate. Single crystal X-ray diffraction analysis for complexes 1, 2 and 4 have been carried out. DNA binding properties by using a mobility shift assay and antimicrobial activity of selected complexes have been evaluated.  相似文献   

13.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

14.
Treatment of the tetrameric group eight fluoride complexes [MF(μ-F)(CO)3]4 [M = Ru (1a), Os (1b)] with the alkynylphosphane, Ph2PCCPh, results in fluoride-bridge cleavage and the formation of the air-sensitive monomeric octahedral complexes [MF2(CO)2(PPh2CCPh)2] [M = Ru (2a), Os (2b)] in high yield. The molecular structure of 2b reveals a cis, cis, trans configuration for each pair of ligands, respectively. The free alkyne moieties in 2 can be readily complexed to hexacarbonyldicobalt fragments by treatment with dicobalt octacarbonyl to afford [MF2(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2] [M = Ru (3a), Os (3b)]. Evidence for an intramolecular non-bonded contact between a bound fluoride and a cobalt carbonyl carbon atom is seen in the molecular structure of 3a. Thermolysis of 3a at 50 °C results in fluoride dissociation to give [RuF(CO)2(μ-η12-PPh2CCPh)2{Co2(CO)6}2]+ (4), while no reaction occurred with the osmium analogue. Prolonged thermolysis at 120 °C in a sealed vessel of both 3a and 3b gave only insoluble decomposition products.  相似文献   

15.
The reactions of [ReOX3(AsPh3)2] and [ReOX3(PPh3)2] with 2-(2′-hydroxyphenyl)-2-benzoxazoline (Hhbo) have been examined and [ReOX2(hbo)(AsPh3)] and [ReOX2(hbo)(PPh3)] (X = Cl, Br) complexes have been obtained. The crystal and molecular structures of [ReOCl2(hbo)(AsPh3)] (1) and [ReOBr2(hbo)(PPh3)] (4) have been determined. The electronic structures of 1 and 4 have been calculated with the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 and 4 have been calculated with the time-dependent DFT method, and the UV–Vis spectra of these complexes have been discussed.  相似文献   

16.
This work reports on the preparation of the complexes [PdCl2(Y1)2], [PdCl2(Y2)2] (Y1 = (p-tolyl)3PCHCOCH3 (1a); Y2 = Ph3PCHCO2CH2Ph (1b)), [Pd{CHP(C7H6)(p-tolyl)2COCH3}(μ-Cl)]2 (2a), [Pd{CHP(C6H4)Ph2CO2CH2Ph}(μ-Cl)]2 (2b), [Pd{CH{P(C7H6)(p-tolyl)2}COCH3}Cl(L)] (L = PPh3 (3a), P(p-tolyl)3 (4a)) and [Pd{CH{P(C6H4)Ph2}CO2CH2Ph}Cl(L)] (L = PPh3 (3b), P(p-tolyl)3 (4b)). Orthometallation and ylide C-coordination in complexes 2a4b are demonstrated by an X-ray diffraction study of 4a.  相似文献   

17.
The reactions of [ReX22-N2COPh-N′,O)(PPh3)2] with 4-phenylpyrimidine have been performed. As a result, the two complexes [ReX2(N2COPh)(4-PhPyr)(PPh3)2] (X = Cl, Br) (4-PhPyr = 4-phenylpyrimidine), isostructural in the solid state, have been obtained. The crystal and molecular structures of ([ReCl2(N2COPh)(4-PhPyr)(PPh3)2])2·CHCl3 (1) and ([ReBr2(N2COPh)(4-PhPyr)(PPh3)2])2·CHCl3 (2) have been determined. The electronic structure of [ReCl2(N2COPh)(4-PhPyr)(PPh3)2] has been examined using the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 have been calculated with the time-dependent DFT method, and the UV–Vis spectrum of [ReCl2(N2COPh)(4-PhPyr)(PPh3)2] has been discussed on this basis.  相似文献   

18.
Quantum chemical calculations using DFT at the B3LYP level have been carried out for the reaction of ethylene with the group-7 compounds ReO2(CH3)(CH2) (Re1), TcO2(CH3)(CH2) (Tc1) and MnO2(CH3)(CH2) (Mn1). The calculations suggest rather complex scenarios with numerous pathways, where the initial compounds Re1-Mn1 may either engage in cycloaddition reactions or numerous addition reactions with concomitant hydrogen migration. There are also energetically low-lying rearrangements of the starting compounds to isomers which may react with ethylene yielding further products. The [2 + 2]Re,C cycloaddition reaction of the starting molecule Re1 is kinetically and thermodynamically favored over the [3 + 2]C,O and [3 + 2]O,O cycloadditions. However, the reaction which leads to the most stable product takes place with initial rearrangement to the dioxohydridometallacyclopropane isomer Re1a that adds ethylene with concomitant hydrogen migration yielding Re1a-1. The latter reaction has a slightly higher barrier than the [2 + 2]Re,C cycloaddition reaction. The direct [3 + 2]C,O cycloaddition becomes more favorable than the [2 + 2]M,C reaction for the starting compounds Tc1 and Mn1 of the lighter metals technetium and manganese but the calculations predict that other reactions are kinetically and thermodynamically more favorable than the cycloadditions. The reactions with the lowest activation barriers lead after rearrangement to the ethyl substituted dioxometallacyclopropanes Tc1a-1 and Mn1a-1. The manganese compound exhibits an even more complex reaction scenario than the technetium compounds. The thermodynamically most stable final product of ethylene addition to Mn1 is the ethoxy substituted metallacyclopropane Mn1a-2 which has, however, a high activation barrier.  相似文献   

19.
Reactions of 1,4-dibromo-2,5-difluorobenzene with two equivalents of lithium diisopropylamide at low temperature (T < −90 °C) followed by a quench with a slight excess of ClPPh2 afford 1,4-dibromo-2,5-bis(diphenylphosphino)-3,6-difluorobenzene (1) in good yields. Reacting 1 with two equivalents of BuLi followed by a quench with a slight excess of ClPR2 yield novel 1,2,4,5-tetrakis(phosphino)-3,6-difluorobenzenes 1,4-(PPh2)2-2,5-(PR2)2-C6F2 (R = Ph (2a); R = iPr (2b); R = Et (2c)) in moderate yields. Compounds 1 and 2a-c were characterized by multinuclear NMR spectroscopy and elemental analyses. In addition, molecular structures of 2a-c have been determined by single crystal X-ray crystallography. Phosphorus atoms of PPh2/PR2 substituents in 2a-c are displaced from the plane of the central phenyl ring due to steric interactions with neighboring groups.  相似文献   

20.
To study the Ru-M interactions and their effects on 31P NMR, complexes [Ru(CO)3(Ph2Ppy)2] (py = pyridine) (1) and [Ru(CO)3(Ph2Ppy)2MCl2] (M = Zn, 2; Cd, 3; Hg, 4) were calculated by density functional theory (DFT) PBE0 method. Moreover, the PBE0-GIAO method was employed to calculate the 31P chemical shifts in complexes. The calculated 31P chemical shifts in 1-3 follow 2 > 3 > 1 which are consistent to experimental results, proving that PBE0-GIAO method adopted in this study is reasonable. This method is employed to predict the 31P chemical shift in designed complex 4. Compared with 1, the 31P chemical shifts in 2-4 vary resulting from adjacent Ru-M interactions. The Ru → M or Ru ← M charge-transfer interactions in 2-4 are revealed by second-order perturbation theory. The strength order of Ru → M interactions is the same as that of the P-Ru → M delocalization with Zn > Cd > Hg, which coincides with the order of 31P NMR chemical shifts. The interaction of Ru → M, corresponding to the delocalization from 4d orbital of Ru to s valence orbital of M2+, results in the delocalization of P-Ru → M, which decreases the electron density of P nucleus and causes the downfield 31P chemical shifts. Except 2, the back-donation effect of Ru ← M, arising from the delocalization from s valence orbital of M2+ to the valence orbital of Ru, is against the P-Ru → M delocalization and results in the upfield 31P chemical shifts in 4. Meanwhile, the binding energies indicate that complex 4 is stable and can be synthesized experimentally. However, as complex [Ru(CO)3(Ph2Ppy)2HgCl]+5 is more stable than 4, the reaction of 1 with HgCl2 only gave 5 experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号