首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ortho-metallated complexes [Pd22(C,C)-C6H4(PPh2CHC(O)C6H5R}2(μ-Cl)2] (R = Ph (1a), NO2 (1b), Br (1c)) were prepared by refluxing equimolar mixtures of Ph3PCHC(O)C6H5R, (R = Ph, NO2, Br) and Pd(OAc)2 in MeOH, followed by an excess of NaCl. The dinuclear complexes (1a-1c) react with silver trifluoromethylsulfonate and bidentate ligands [L = bipy (2,2′-bipyridine), phen (phenanthroline), dppe (bis(diphenylphosphino)ethane), dppp (bis(diphenylphosphino)propane)] giving the mononuclear stabilized orthopalladated complexes in endo position [Pd{κ2(C,C)-C6H4(PPh2CHC(O)R}L](OTf) [R = Ph, L = phen (2a), bipy (3a), dppe (4a), dppp (5a); R = NO2, L = phen (2b), bipy (3b), dppe (4b), dppp (5b); R = Br, L = phen (2c), bipy (3c), dppe (4c), dppp (5c); OTf = trifluoromethylsulfonate anion]. Orthometalation and ylidic C-coordination are demonstrated by an X-ray diffraction study of 2c and 3c. In the structures, the palladium atom shows a slightly distorted square-planar coordination geometry.  相似文献   

2.
The μ-aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCMe)(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; Xyl = 2,6-Me2C6H3) react with ethynylferrocene to give the corresponding bridging vinyliminium complexes [Fe2{μ-η13-CN(Me)(R)CHC(Fc)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 2a; R = Xyl, 2b). Insertion of the ethynylferrocene in the metal-carbyne bond is regiospecific, and leads to the formation of only one isomer.Complexes 2a and 2b undergo hydride addition (by NaBH4) affording the enaminoalkylidene complex [Fe2{μ-η13-C(H)(N(Me)2)CHC(Fc)}(μ-CO)(CO)(Cp)2] (3a) and the bis-alkylidene [Fe2{μ-η12-C(N(Me)(Xyl))CH2C(Fc)}(μ-CO)(CO)(Cp)2] (3b), respectively. Upon treatment with NaH, compounds 2a and 2b undergo fragmentation, affording the 1-metalla-2-aminocyclopenta-1,3-dien-5-one complexes [Fe(CO)(Cp){C(N(Me)(R))}CHC(Fc)C(O)}] (R = Me, 4a; R = Xyl, 4b).The molecular structures of 2b, 3b and 4b have been determined by X-ray diffraction studies.  相似文献   

3.
A terminally coordinated CO ligand in the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; R = Xyl, 1b; Xyl = 2,6-Me2C6H3), is readily displaced by primary and secondary amines (L), in the presence of Me3NO, affording the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = NH2Et, 4a; R = Xyl, L = NH2Et, 4b; R = Me, L = NH2Pri, 5a; R = Xyl, L = NH2Pri, 5b; R = Xyl, L = NH2C6H11, 6; R = Xyl, L = NH2Ph, 7; R = Xyl, L = NH3, 8; R = Me, L = NHMe2, 9a; R = Xyl, L = NHMe2, 9b; R = Xyl, = NH(CH2)5, 10). In the absence of Me3NO, NH2Et gives addition at the CO ligand of 1b, yielding [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(O)NHEt}(Cp)2] (11). Carbonyl replacement is also observed in the reaction of 1a-b with pyridine and benzophenone imine, affording [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = Py, 12a; R = Xyl, L = Py, 12b; R = Me, L = HNCPh2, 13a; R = Xyl, L = HNCPh2, 13b). The imino complex 13b reacts with p-tolylacetylide leading to the formation of the μ-vinylidene-diaminocarbene compound [Fe2{μ-η12- CC(Tol)C(Ph)2N(H)CN(Me)(Xyl){(μ-CO)(CO)(Cp2)] (15) which has been studied by X-ray diffraction.  相似文献   

4.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

5.
Treatment of the thiosemicarbazones 2-XC6H4C(Me)NN(H)C(S)NHR (R = Me, X = F, a; R = Et, X = F, b; R = Me, X = Cl, c; R = Et, X = Br, d) with potassium tetrachloropalladate(II) in ethanol, lithium tetrachloropalladate(II) in methanol or palladium(II) acetate in acetic acid, as appropriate, gave the tetranuclear cyclometallated complexes [Pd{2-XC6H3C(Me)NNC(S)NHR}]4 (1a-1d). Reaction of 1a-1d with the diphosphines Ph2PCH2PPh2 (dppm), Ph2P(CH2)2PPh2 (dppe), Ph2P(CH2)3PPh2 (dppp) or trans-Ph2PCHCHPPh2 (trans-dpe) in 1:2 molar ratio gave the dinuclear cyclometallated complexes [{Pd[2-XC6H3C(Me)NNC(S)-NHR]}2(μ-diphosphine-P,P)] (2a-5a, 3b, 3d, 4c, 5c). Reaction of 1a, 1b with the short-bite or long-bite diphosphines, dppm or cis-dpe, in a 1:4 molar ratio gave the mononuclear cyclometallated complexes [Pd{2-XC6H3C(Me)NNC(S)NHR}(diphosphine-P)] (6a, 6b, 7a). The molecular structure of ligand a and of complexes 1a, 3d, 5a, 5c, 6a, 6b and 7a have been determined by X-ray diffraction analysis. The structure of complex 7a shows that the long-bite cis-bis(diphenylphosphino)ethene phosphine appears as monodentate with an uncoordinated phosphorus donor atom.  相似文献   

6.
Triorganotin chlorides Me3SnCl and (LNC)Me2SnCl (LNC = 2-[(dimethylamino)methyl]phenyl) reacted with potassium 1′-(diphenylphosphino)-1-ferrocenecarboxylate to give the respective carboxylates, Ph2PfcCO2SnMe3 (1) and Ph2PfcCO2SnMe2(LNC) (2; fc = ferrocene-1,1′-diyl), while the analogous triphenylstannyl derivative 3 resulted by condensation of Ph3SnOH with 1′-(diphenylphosphino)-1-ferrocenecarboxylic acid (Hdpf). Compounds 1 and 2 were smoothly oxidized with hydrogen peroxide or elemental sulfur to afford the corresponding P-chalcogen derivatives (P-oxides 1a and 2a; P-sulfides 1b and 2b). All compounds were characterized by multinuclear NMR, IR and mass spectroscopy, and the solid-state structures of 1, 1a, 2, 2a and 2b were determined by single-crystal X-ray diffraction. In the crystal structures of 1 and 1a, the tin atoms were found with distorted trigonal bipyramidal coordination environments completed by the CO or PO oxygens, respectively, from adjacent molecules, which in turn resulted in the formation of infinite linear assemblies. Tin atoms in 2, 2a, and 2b were found with trigonal bipyramidal surrounding as well, though with the donor substituent LNC assuming one of the axial donor sites. Compounds 2 and 2a crystallized as stoichiometric hydrates (2·1/2H2O, 2a·H2O), in which the water molecules served as hydrogen bond donors for the polar groups (CO and PO) and thus aided the formation of closed H-bonded assemblies; the structure of 2b was essentially molecular.  相似文献   

7.
The bridging diiron thiocarbyne complex [Fe2{μ-CS(Me)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1) reacts with activated olefins (methyl acrylate, acrylonitrile, styrene, diethyl maleate), in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13-Cα(SMe)Cβ(R′)Cγ(H)(R″)} (μ-CO)(CO)(Cp)2] (R″ = CO2Me, R′ = H, 3a; R″ = CN, R′ = H, 3b; R″ = C6H5, R′ = H, 3c; R″ = R′ = CO2Et, 3d). The coupling reaction of olefin with thiocarbyne is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs between the less substituted alkene carbon and the thiocarbyne. Moreover, olefinic hydrogens of the bridging ligands are mutually trans.The reactions of 3a-b with MeSO3CF3 result, selectively, in the formation of the cationic μ-sulphonium allylidene complexes [Fe2{μ-η13-Cα(SMe2)Cβ (H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CO2Me, 4a; R = CN, 4b). Compound 4a undergoes displacement of the SMe2 group by nucleophiles such as NaBH4, NBu4CN and NaOMe, affording the complexes [Fe2{μ-η13-Cα(R)Cβ (H)Cγ(H)(CO2Me)}(μ-CO)(CO)(Cp)2] (R = H, 5a; R = CN, 5b; R = OMe, 5c), respectively. The molecular structures of 3a and 5a have been determined by X-ray diffraction studies.  相似文献   

8.
The preparation and characterization are described for four ruthenium(II) complexes containing hemilabile phosphine-ether ligand o-(diphenylphosphino)anisole (Ph2PC6H4OMe-o) and/or bidentate ligand diphenylphosphino-phenolate ([Ph2PC6H4O-o]) Ru(RCN)22-Ph2PC6H4O-o)2 (1a: R = Me; 1b: R = Et) and [Ru(RCN)22-Ph2PC6H4O-o)(κ2-Ph2PC6H4OMe-o)](PF6) (2a: R = Me; 2b: R = Et). The ruthenium(II) phosphine-ether complexes undergo mild methyl-oxygen bond cleavage. Two different kinds reaction mechanism are proposed to describe the methyl-oxygen bond cleavage, one involving attack of anionic nucleophiles and another involving the phosphine. The new reactions define novel routes to phosphine-phenolate complexes. The structures of complexes 1a, 1b and 2a were confirmed by X-ray crystallography.  相似文献   

9.
Primary alkynes R′CCH [R′ = Me3Si, Tol, CH2OH, CO2Me, (CH2)4CCH, Me] insert into the metal-carbon bond of diruthenium μ-aminocarbynes [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] [R = 2,6-Me2C6H3 (Xyl), 1a; CH2Ph (Bz), 1b; Me, 1c] to give the vinyliminium complexes [Ru2{μ-η13-C(R′)CHCN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me3Si, 2a; R = Bz, R′ = Me3Si, 2b; R = Me, R′ = Me3Si, 2c; R = Xyl, R′ = Tol, 3a; R = Bz, R′ = Tol, 3b; R = Bz, R′ = CH2OH, 4; R = Bz, R′ = CO2Me, 5a; R = Me, R′ = CO2Me, 5b; R = Xyl, R′ = (CH2)4CCH, 6; R = Xyl, R′ = Me, 7a; R = Bz, R′ = Me, 7b; R = Me, R′ = Me, 7c]. The related compound [Ru2{μ-η13-C[C(Me)CH2]CHCN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3], (9) is better prepared by reacting [Ru2{μ-CN(Me)(Xyl)}(μ-CO)(CO)(Cl)(Cp)2] (8) with AgSO3CF3 in the presence of HCCC(Me)CH2 in CH2Cl2 at low temperature.In a similar way, also secondary alkynes can be inserted to give the new complexes [Ru2{μ-η13-C(R′)C(R′)CN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Bz, R′ = CO2Me, 11; R = Xyl, R′ = Et, 12a; R = Bz, R′ = Et, 12b; R = Xyl, R′ = Me, 13). The reactions of 2-7, 9, 11-13 with hydrides (i.e., NaBH4, NaH) have been also studied, affording μ-vinylalkylidene complexes [Ru2{μ-η13-C(R′)C(R″)C(H)N(Me)(R)}(μ-CO)(CO)(Cp)2] (R = Bz, R′ = Me3Si, R″ = H, 14a; R = Me, R′ = Me3Si, R″ = H, 14b; R = Bz, R′ = Tol, R″ = H, 15; R = Bz, R′ = R″ = Et, 16), bis-alkylidene complexes [Ru2{μ-η12-C(R′)C(H)(R″)CN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (R′ = Me3Si, R″ = H, 17; R′ = R″ = Et, 18), acetylide compounds [Ru2{μ-CN(Me)(R)}(μ-CO)(CO)(CCR′)(Cp)2] (R = Xyl, R′ = Tol, 19; R = Bz, R′ = Me3Si, 20; R = Xyl, R′ = Me, 21) or the tetranuclear species [Ru2{μ-η12-C(Me)CCN(Me)(Bz)}(μ-CO)(CO)(Cp)2]2 (23) depending on the properties of the hydride and the substituents on the complex. Chromatography of 21 on alumina results in its conversion into [Ru2{μ-η31-C[N(Me)(Xyl)]C(H)CCH2}(μ-CO)(CO)(Cp)2] (22). The crystal structures of 2a[CF3SO3] · 0.5CH2Cl2, 12a[CF3SO3] and 22 have been determined by X-ray diffraction studies.  相似文献   

10.
Ph2SiCl2 and PhMeSiCl2 react with Li2E (E = S, Se, Te) under formation of trimeric diorganosilicon chalcogenides (PhRSiE)3 (R = Ph: 1a-3a, R = Me: cis/trans-4a (E = S), cis/trans-5a (E = Se)). In case of E = S, Se dimeric four-membered ring compounds (PhRSiE)2 (R = Ph: 1b-2b, R = Me: cis/trans-4b (E = S), cis/trans-5b (E = Se)) have been observed as by-products. 1a-5b have been characterized by multinuclear NMR spectroscopy (1H, 13C, 29Si, 77Se, 125Te). Four- and six-membered ring compounds differ significantly in 29Si and 77Se chemical shifts as well as in the value of 1JSiSe.The molecular structures of 2a, 3a and trans-5a reported in this paper are the first examples of compounds with unfused six-membered rings Si3E3 (E = Se, Te). The Si3E3 rings adopt twisted boat conformations. The crystal structure of 3a reveals an intermolecular Te-Te contact of 3.858 Å which yields a dimerization in the solid state.  相似文献   

11.
The McMurry coupling of (tetraphenylcyclobutadiene)cobalt(cyclopentadienyl) ketones, (C4Ph4)Co[C5H4C(O)R], where R = Me, 3a, or Et, 3b, with a range of substituted benzophenones furnished a series of cobaltifens, organometallic analogues of tamoxifen whereby a phenyl ring has been replaced by an organo-cobalt sandwich moiety. These systems of the general formula (η4-C4Ph4)Co[η5-C5H4C(R)C(Ar)Ar′], where R = Me or Et, and Ar = Ar′ = p-C6H4X where X is OH, 2a and 2b, OMe, 2c and 2d, OBn, 2e and 2f, or O(CH2)2NMe2, 12a and 12b, and where Ar = C6H4OH and Ar′ = C6H4O(CH2)2NMe2, 2g and 2h, have been characterised by NMR spectroscopy and/or X-ray crystallography. The effect of 2a and 2b, 2g and 2h, and 12a and 12b on the growth of MCF-7 (hormone-dependent) and MDA-MB-231 (hormone-independent breast cancer cells) was studied. The dihydroxycobaltifens 2a and 2b exhibit a strong estrogenic effect on MCF-7 cells while the aminoalkyl-hydroxycobaltifens, 2g and 2h, were found to be only slightly cytotoxic on MDA-MB-231 cells (IC50 = 27.5 and 17 μM); surprisingly, however, the bis-(dimethylaminoethoxy)cobaltifens, 12a and 12b were shown to be highly cytotoxic towards both cell lines (IC50 = 3.8 and 2.5 μM).  相似文献   

12.
The neutral, octahedral ruthenium vinylidene complexes mer,trans-[(PNN)Cl2Ru(CCHR)] (PNN = N-(2-diphenylphosphinobenzylidene)-2-(2-pyridyl)ethylamine; R = Ph, 1a; R = tBu, 1b) are reported. An X-ray crystallographic study of 1a confirms the tridentate, meridional coordination mode of the PNN ligand. Compounds 1a and 1b undergo regioselective electrophilic addition with HBF4 · Et2O at Cβ of the vinylidene ligand at low temperatures, and are cleanly and quantitatively converted to the ruthenium carbynes mer,trans-[(PNN)Cl2Ru(CCH2R)][BF4] (R = Ph, 2a; R = tBu, 2b). Carbynes 2a and 2b are stable only at low temperatures (<−50 °C). Complex 1a undergoes ligand substitution with L to yield mer,trans-[(PNN)Cl2Ru(L)] (L = MeCN, 3a; L = CO, 3b).  相似文献   

13.
Treatment of [Fc-1-R1-1′-R2] (R1 = H, R2 = CH(O); R1 = H, R2 = CMe(O); R1 = R2 = CMe(O)) with LiCCCH2OLi (prepared in situ from HCCCH2OH and n-BuLi) affords the ferrocenyl-substituted but-2-yne-1,4-diol compounds of general formula [Fc-1-R1-1′-{CR(OH)CCCH2OH}] (R1 = R = H (1a); R1 = H, R = Me (1b); R1 = CMe(O), R = Me (1c)) in low to high yields, respectively (where Fc = Fe(η5-C5H4)2). In the case of the reactions of [Fc-1-R1-1′-R2] (R1 = H, R2 = CH(O); R1 = R2 = CMe(O)), the by-products [Fc-1-R1-1′-{CR(OH)(CH2)3CH3}] (R1 = R = H (2a); R1 = CMe(O), R = Me (2c)) along with minor quantities of [Fc-1,1′-{CMe(OH)(CH2)3CH3}2] (3) are also isolated; a hydrazide derivative of dehydrated 2c, [1-(CMeCHCH2CH2CH3)-1′-(CMeNNH-2,4-(NO2)2C6H3)] (2c′), has been crystallographically characterised. Interaction of 1 with Co2(CO)8 smoothly generates the alkyne-bridged complexes [Fc-1-R1-1′-{Co2(CO)6-μ-η2-CR(OH)CCCH2OH}] (R1 = R = H (4a); R1 = H, R = Me(4b); R1 = CMe(O), R = Me (4c)) in good yield. Reaction of 4a with PhSH, in the presence of catalytic quantities of HBF4 · OEt2, gives the mono- [Fc-1-H-1′-{Co2(CO)6-μ-η2-CH(SPh)CCCH2OH}] (5) and bis-substituted [Fc-1-H-1′-{Co2(CO)6-μ-η2-CH(SPh)CCCH2SPh}] (6) straight chain species, while with HS(CH2)nSH (n = 2,3) the eight- and nine-membered dithiomacrocylic complexes [Fc-1-H-1′-{cyclo-Co2(CO)6-μ-η2-CH(S(CH2)n-)CCCH2S-}] [n = 2 (7a), n = 3 (7b)] are afforded. By contrast, during attempted macrocyclic formation using 4b and HSCH2CH2OCH2CH2SH dehydration occurs to give [Fc-1-H-1′-{Co2(CO)6-μ-η2-C(CH2)CCCH2OH}] (8). Single crystal X-ray diffraction studies have been reported on 2c′, 4b, 4c, 7b and 8.  相似文献   

14.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

15.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

16.
The reaction pathway for the formation of the trimethylsiloxysilyllithium compounds (Me3SiO)RR′SiLi (2a: R = Et, 2b: R = iPr, 2c: R = 2,4,6-Me3C6H2 (Mes); 2a-c: R′ = Ph; 2d: R = R′ = Mes) starting from the conversion of the corresponding trimethylsiloxychlorosilanes (Me3SiO)RR′SiCl (1a-d) in the presence of excess lithium in a mixture of THF/diethyl ether/n-pentane at −110 °C was investigated.The trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a: R = Et, 1b: R = iPr, 1c: R = Mes) react with lithium to give initially the trimethylsiloxysilyllithium compounds (Me3SiO)RPhSiLi (2a-c). These siloxysilyllithiums 2 couple partially with more trimethylsiloxychlorosilanes 1 to produce the siloxydisilanes (Me3SiO)RPhSi-SiPhR(OSiMe3) (Ia-c), and they undergo bimolecular self-condensation affording the trimethylsiloxydisilanyllithium compounds (Me3SiO)RPhSi-RPhSiLi (3a-c). The siloxydisilanes I are cleaved by excess of lithium to give the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2). In the case of the two trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a: R = Et, 3b: R = iPr) a reaction with more trimethylsiloxychlorosilanes (Me3SiO)RPhSiCl (1a, 1b) takes place under formation of siloxytrisilanes (Me3SiO)RPhSi-RPhSi-SiPhR(OSiMe3) (IIa: R = Et, IIb: R = iPr) which are cleaved by lithium to yield the trimethylsiloxysilyllithiums (Me3SiO)RPhSiLi (2a, 2b) and the trimethylsiloxydisilanyllithiums (Me3SiO)RPhSi-RPhSiLi (3a, 3b). The dimesityl-trimethylsiloxy-silyllithium (Me3SiO)Mes2SiLi (2d) was obtained directly by reaction of the trimethylsiloxychlorosilane (Me3SiO)Mes2SiCl (1d) and lithium without formation of the siloxydisilane intermediate. Both silyllithium compounds 2 and 3 were trapped with HMe2SiCl giving the products (Me3SiO)RR′Si-SiMe2H and (Me3SiO)RPhSi-RPhSi-SiMe2H.  相似文献   

17.
Peripherally palladated Ni(II) porphyrins have been prepared using enantiopure chiral chelating diphosphines as supporting ligands on the attached Pd(II) fragment. Both enantiomers of the following complexes have been obtained in good yields, using oxidative addition of the bromoporphyrin starting material 5-bromo-10,20-diphenylporphyrinatonickel(II) (NiDPPBr (1)) to the [Pd0L] complex generated in situ from Pd2dba3 and the chiral ligand L: [PdBr(NiDPP)(CHIRAPHOS)] (2a,b) [CHIRAPHOS = 2,3-bis(diphenylphosphino)butane], [PdBr(NiDPP)(Tol-BINAP)] (3a,b) [Tol-BINAP) = 2,2′-bis(di-p-tolylphosphino)-1,1′-binaphthyl] and [PdBr(NiDPP)(diphos)] [diphos = 1,2-bis(methylphenylphosphino)benzene] (4a,b). The induced asymmetry in the porphyrin was readily detected by 1H NMR and CD spectroscopy. The porphyrin chiroptical properties are strongly dependent upon the structure of the chiral ligand, such that a monosignate CD signal, and symmetric and asymmetric exciton couplets were observed for 4a, 2b, and 3a,b, respectively.  相似文献   

18.
The synthesis of a series of anionic half-sandwich ruthenium-arene complexes [E][RuCl26-p-cymene){PR2(p-Ph3BC6H4)}] (E = Bu4N+: R = Ph, 1a, iPr, 1b or Cy, 1c; E = bis(triphenylphosphine)iminium or PNP+: R = Ph, 1a′, iPr, 1b′ or Cy, 1c′) are reported. X-ray crystallographic studies of 1a′ and 1b′ confirmed the three-legged piano-stool coordination geometry. In solution, complexes 1a-c and 1a-c′ are proposed to form monomer-dimer equilibria as a result of chloride ligand dissociation. Complexes 1a-c and 1a-c′ also form the formally neutral zwitterionic complexes [RuCl(L)(η6-p-cymene){PR2(p-Ph3BC6H4)}] (L = pyridine: R = Ph, 2a, iPr, 2b or Cy, 2c; L = MeCN: R = Ph, 3a, iPr, 3b or Cy, 3c) via chloride ligand abstraction using AgNO3 or MeOTf.  相似文献   

19.
Mononuclear complexes of the type, M(CO)4[Se2P(OR)2] (M = Mn, R = iPr, 1a; Et, 1b; M = Re, R = iPr, 3a; Et, 3b) can be prepared from either [-Se(Se)P(OiPr)2]2 (A) or [Se{-Se(Se)P(OEt)2}2] (B) with M(CO)5Br. O,O′-dialkyl diselenophosphate ([(RO)2PSe2]-, abbreviated as dsep) ligands generated from A and B act as a chelating ligand in these complexes. Upon refluxing in acetonitrile, these mononuclear complexes yield dinuclear complexes with a general formula of [M2(CO)6{Se2P(OR)2}2] (M = Mn, R = iPr, 2a; Et, 2b; M = Re, R = iPr, 4a; Et, 4b). Dsep ligands display a triconnective, bimetallic bonding mode in the dinuclear compounds and this kind of connective pattern has never been identified in any phosphor-1,1-diselenoato metal complexes. Compounds 2b, 3b, and 4 are structurally characterized. Compounds 2b and 3b display weak, secondary Se?Se interactions in their lattices.  相似文献   

20.
Ferrocene-based β-aminoalcohols FcCH2NHCR2CH2OH (R = H, 1a; R = Me, 1b) and (S)-FcCH2NHCH(CHMe2)CH2OH (1c; Fc = ferrocenyl) react with 2,4,6-trinitrophenol (Hpic) under proton transfer to afford the corresponding ammonium picrates 2a-c. In the crystal, these picrates associate predominantly via N-H?O and O-H?O bifurcated hydrogen bonds between the NH2+ and OH groups in the aminoalcohol chain as the donors and the phenoxide and NO2 oxygen atoms of the picrate anion as the acceptors. Compounds 2a and 2b form closed dimeric assemblies [1nH]2[pic]2 (n = a, b) around the crystallographic inversion centres. By contrast, their chiral analogue 2c gives rise to monomeric units [1cH][pic] (albeit through similar interactions), that further aggregate into infinite linear chains via N-H?O hydrogen bonds. The formed assemblies are interconnected by the soft C-H?O hydrogen bonds and via π?π stacking interactions of the picrate ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号