首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pure chemosynthetic Al2O3-2SiO2 geoploymers displaying positive alkali-activated polymerization properties and high compressive strength at room temperature were effectively fabricated utilizing a sol-gel method. The molecular structure of the precursor powder and resulting geopolymers were investigated by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) analysis. In addition, the mechanical and alkali-activated polymerization properties of these materials were also studied. NMR data revealed that the chemosynthetic powders began to contain 5-coordinated Al atoms when the calcination temperatures exceeded 200 °C. These calcined powders were capable of reacting with sodium silicate solutions at calcination temperatures exceeding 300 °C, which is, however, much lower than the temperature required to convert kaolin to Metakaolin.  相似文献   

2.
SiO2-BaO-ZnO-xB2O3-(10−x) Y2O3, (0 ≤ x ≤ 10) glasses are synthesized. The effect of Y2O3 on the structural and optical properties of glasses has been investigated using different characterization techniques. The results are discussed in light of non-bridging oxygens (NBO), optical basicity and heat-treatment of glasses. The band gap has been calculated for as cast and heat-treated glasses. The band gap energy is found to decrease with the increasing content of Y2O3 in the glasses and heat-treatment. The presence of the crystalline phase in the glass matrix showed remarkable effect on band gap which decreases to semiconducting range.  相似文献   

3.
Glasses, whose basic composition was based on the CaO-MgO-SiO2 system and doped with B2O3, P2O5, Na2O, and CaF2, were prepared by melting at 1400 °C for 1 h. Raman and infrared (IR) spectroscopy revealed that the main structural units in the glass network were predominantly Q1 and Q2 silicate species. The presence of phosphate and borate units in the structure of the glasses was also evident in these spectra. X-ray analysis showed that the investigated glasses devitrified at 750 °C and higher temperatures. The crystalline phases of diopside and wollastonite dominated, but weak peaks, assigned to akermanite and fluorapatite, were also registered in the diffractograms. The presence of B2O3, Na2O, and CaF2 had a negligible influence on the assemblage of the crystallized phases, but it caused a reduction of crystallization temperature, comparing to similar glasses of the CaO-MgO-SiO2 system.  相似文献   

4.
Shengchun Li  B. Li  J.J. Wei 《Journal of Non》2010,356(43):2263-2267
(30 − x/2)Li2O·(70 − x/2)B2O3·xAl2O3(x = 0, 5 and 10) composite gels have been fabricated by the sol-gel method. LiOCH3, B(OC4H9)3, and Al(OC4H9)3 were used as precursor for Li2O, B2O3, and Al2O3, respectively. B(OC4H9)3 and Al(OC4H9)3 were hydrolyzed separately and then mixed. The crystallization behavior and structure of the gels upon thermal treatment temperatures between 150 and 550 °C are characterized on the basis of SEM, XRD and IR analyses. Xerogel with x = 0 exhibits non-crystal features, whereas crystalline phases are found in the xerogels with x = 5 and 10. The crystalline phases are not found with increasing heat treatment temperatures from 150 to 450 °C, but crystalline phases appear present at 550 °C. The xerogel with x = 0, subject to thermal treatment below 450 °C, is found to be still amorphous, and a 550 °C heat treatment leads its structure changing from glassy to crystalline.  相似文献   

5.
The synthesis of mixed ZnO/SiO2 oxides has been carried out using sol gel technique. Gelation time of the produced oxides gel has been measured experimentally by using turbidity change with time using Turbidimeter. In addition, gelation time was estimated visually. It is found that the gelation time is decreased by increasing the concentration of ZnO and SiO2. Correlations between gelation times and concentrations of products are also discussed. Surface energy between the formed gel and solution is calculated as 12.1 mJ/m2. The gelation rate is increased and the Gibbs free energy for the formation of critical nucleus is decreased by increasing the concentration product of ZnO · SiO2. The critical radius of the nucleus is decreased from 5.75 to 5.02 Å when the concentration product is increased from 6.42% to 15.72%. On the other hand, the number of molecules in the critical nucleus is decreased from 11 to 8 when the concentration product changed under the same conditions. This approach can be used as a model to discuss the effect of any additives on the enhancing or inhibition the gelation rate for any gel.  相似文献   

6.
L.C. Costa 《Journal of Non》2011,357(10):2178-2181
In this work we study the effect of introducing europium oxide in lead borate glasses, in concentrations up to x = 0.20, using the impedance spectroscopy in a large frequency range (0.1 Hz to 9 GHz). Two relaxation processes can be identified. The low frequency process deviates considerably from the Debye type and is modelled by the Cole-Davidson expression. The high frequency relaxation is also a non-Debye type and is fitted by the Cole-Cole expression. These results imply some distribution of relaxation times, due to the interaction between the dipoles.The behaviour of the dielectric strength is similar in the low and high frequency regions, indicating a cluster formation at a critical concentration of europium oxide (x = 0.03).  相似文献   

7.
Complex impedance spectroscopic studies were carried out on CsNO3 and CsNO3-Al2O3 dispersed solid electrolyte systems (DSES) in the temperature range of 100-350 °C and the frequency 50 kHz-1 MHz. Dielectric constant, loss tangent, ac conductivity and dc ionic conductivity (obtained from CIS) in these systems are presented. DC ionic conductivity is noticed to increase with temperature in the extrinsic region in pure and dispersed systems. The enhancement of conductivity in DSES was observed to be about two orders of magnitude over its pure form in the extrinsic region. This enhancement of conductivity was attributed to the formation of space charge layer between the host material and the dispersoid. Enhancement in conductivity is found to increase with m/o up to 40 m/o where as it decreased for 80 m/o. Dielectric constant, dielectric loss and ac conductivity are also found to increase with temperature, and with mole percent it maintained the similar behavior as that of dc conductivity. These dielectric properties are interpreted in terms of space charge polarization and increased concentration of defects in the interfacial layer formed between the host and the dispersoid.  相似文献   

8.
Aiming at tailoring optical properties, the precipitation of LaF3 nano-crystals in LaF3–Na2O–Al2O3–SiO2 glass-ceramics is studied thoroughly on the nano-scale using advanced transmission electron microscopic techniques. Nano-sized phase-separation droplets enriched in lanthanum and silicon are formed already in the base glass. Within these less than 20 nm large droplets, LaF3 crystallizes upon heat treatment. The nano-crystallization mechanism revealed is self-limited since growth is restricted by the size of the droplets. An average crystallite size of around 12 nm is achieved with a narrow size distribution since the phase-separation droplets also contain silicon not incorporated into the growing crystal. Instead, excess silicon relocated to the periphery of the pre-existing phase-separation droplets forms a diffusion barrier around the LaF3 nano-crystals preventing further crystal growth and/or ripening.  相似文献   

9.
The nanostructured 6CaO·6SrO·7Al2O3 (C6S6A7) thin films with cubic structure using calcium, strontium metals, aluminium isopropoxide and ethylene glycol monomethyl ether as stating materials has been fabricated via sol-gel route. Based on hydrolysis of Ca2+, Sr2+ and Al3+ in the sol-gel processing using ethylene glycol monomethyl ether as solvent have been employed as the precursor material. The films were coated on soda lime float glass by the dip coating technique and annealed at 450 °C in air atmosphere. The structure, morphology and composition of the films were investigated by Fourier transformed infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy indicating that the films were composed of C6S6A7 nanoparticles with cubic structure. The spectral transmittance of the films was measured in the wavelength range of 200-1100 nm using an UV-visible spectrometer. It has been found that the optical properties of the films significantly affected by precursor chemistry and annealing temperature due to the improvement of the crystallinity of the films with increasing annealing temperature and became stable when the annealing temperature is higher than 450 °C. The C6S6A7 films annealed at 450 °C had high transparency about 80% in wide visible range.  相似文献   

10.
P. Srinivasa Rao 《Journal of Non》2011,357(21):3585-3591
The variation in physical, structural and electrical properties has been studied as a function of Bi2O3 content in 20ZnF2-(10 + x) Bi2O3-(70-x) P2O5, 0 ≤ x ≤ 10 mol% glasses, which were prepared by melt quenching technique and characterized by differential thermal analysis (DTA). Colorless samples, which have no absorption peaks, are obtained for 10 and 12 mol% of Bi2O3 and the glasses are slowly becoming brownish from 15 to 20 mol% of Bi2O3 which exhibit two absorption peaks at ~ 370 nm, ~ 450 nm correspond to Bi° transitions 4S3/2 → 2P3/2 and 4S3/2 → 2P1/2 respectively. The decrease in 3P1 → 1S0 transition of Bi3+ photo luminescence emission for 18 and 20 mol% of Bi2O3 and increase in optical absorption area shows the reduction of Bi3+ to Bi°. From FTIR studies it is observed that an addition of Bi2O3 decreases the P―O―P covalent bond by forming P―O―Bi bonds due to high polarizing nature of Bi3+ ions. Dielectric parameters like ε', tan δ and a.c. conductivity σac are found to increase and activation energy for a.c. conduction is found to decrease with the increase in the concentration of Bi2O3. Density of defect energy states is found to increase for higher concentration of Bi2O3 and is discussed according to quantum mechanical tunneling (QMT) model.  相似文献   

11.
Min Wang  Jiao Jin  Jiwei Zhai 《Journal of Non》2011,357(3):1160-1163
A sol-gel method was used to prepare CaO-B2O3-SiO2 (CBS) glass powder for making low-temperature cofired ceramics. This paper was focused on the mechanism of hydrolysis and polymerization and also on the structural evolution of xerogel at various temperatures. The xerogel was transformed into glass ceramics containing CaSiO3 and CaB2O4 crystalline phases through nucleation and crystallization processes. The results indicated that the xerogel exhibits [BO4] or [SiO4] based three-dimensional network structure whose interstices Ca ions fill in, which becomes more orderly and stable after heat treatments. The CBS glass ceramics through controlled crystallization have a potential as electronic packaging materials.  相似文献   

12.
The evolution of structure, phase composition and spectroscopic properties of CoO-doped (up to 5 mol%) titania-containing zinc aluminosilicate glasses with their heat-treatment has been studied using Raman scattering, small angle X-ray scattering, X-ray diffraction analysis and optical absorption spectra. Addition of cobalt oxide was observed to facilitate amorphous phase separation of the parent glass and gahnite, ZnAl2O4, crystallization. Cobalt oxide entered phases formed during low-temperature heat-treatments (720 °C), i.e., amorphous phase, enriched in ZnO, Al2O3 and TiO2 and crystalline phase of gahnite. The absorption of these glass-ceramics was defined mainly by tetrahedral Co2+ ions located in gahnite nanocrystals. As the temperature was increased further, traces of anosovite solid solution appeared and then decomposed. Even after high-temperature heat-treatments, a certain portion of Co2+ ions remained in amorphous zinc aluminotitanate phase and in octahedral sites of inversed gahnite spinel. In glass-ceramics, the residual high silica amorphous phase contained a small quantity of [TiO4] centers, which content was smaller in Co:ZAS samples as compared with non-doped glass-ceramics.  相似文献   

13.
H. Doweidar 《Journal of Non》2011,357(7):1665-1670
Data of density, refractive index and thermal expansion coefficient for B2O3-SiO2 and GeO2-SiO2 glasses have been analyzed. The volumes of the structural units are the same found for the vitreous B2O3, GeO2 and SiO2. The volume of any structural unit is constant over the entire composition region of the glass system. The same has been found for the differential refraction and unit refraction of the structural units in these glasses. Different features are observed for the differential expansion of the structural units. There is a considerable change with composition in the differential expansion of BO3, GeO4 and SiO4 units. The effect is attributed to a change in the asymmetry of vibrations with the number of Si-O-B or Si-O-Ge linkages in the matrix. The thermal expansion coefficient is mainly determined by the contribution of B2O3 or GeO2 in the concerned glasses.  相似文献   

14.
By rapid quenching in a twin roller apparatus, glass was found to occur widely in the systems of Li2O with Al2O3, Ga2O3, Bi2O3 and in mixed systems. Examination of the resulting flakes by X-ray powder diffraction, differential thermal analysis, and capacitance data revealed the occurrence of glass, glass transitions, crystallization exotherms and the nature of some of the crystallization paths.The log ionic conductivity of the glasses was found to follow a linear relationship with the Li concentration. Evidence was observed for three new metastable crystalline phases, one in the Li2OAl2O3 system and two in the Li2OBi2O3 system. The latter system also showed evidence for the occurrence of two glasses at almost all compositions.  相似文献   

15.
Melting and crystallization scenarios of barium tetraborate BaB4O7 (BaO·2B2O3) are studied in situ by Raman spectroscopy. It is shown that the scenario depends on the temperature–time history of melt. Crystallization conditions of the beta modification of barium tetraborate (β-BaB4O7) from a stoichiometric glass structure BaO·2B2O3 were investigated.  相似文献   

16.
The structural behavior of nickel oxide in glassy and glass-ceramic materials, obtained in the system of Na2O-CaO-MgO-Fe2O3-Al2O3-SiO2, was investigated. The influence of the NiO content on the vitrification, crystallization, structure and exploitation properties of two model compositions, with different ratios [CaO]/[MgO] was analyzed. On the basis of DSC and XRD data, it is shown that NiO promoted the formation of bunsenite crystals, as nuclei for crystallization. On the other hand, NiO promoted formation of pyroxenes even for compositions with low MgO contents, which formed gehlenite without NiO admixtures. It is shown that in the composition with relatively high MgO contents, NiO could participate in the formation of two types of pyroxenes with the structure and chemical composition similar to (MgO0.4NiO0.6)(CaO0.9NiO0.1)Si2O6 and diopside-hedenbergite solid solutions. The optimal contents of NiO in both model compositions was about of 7 wt%, since higher contents reduced the exploitation properties. The glass-ceramics with optimal contents of NiO were also produced using Ni bearing galvanic slurry and coal ash; the resulting materials showed similar exploitation properties to those mentioned above.  相似文献   

17.
Abstract  The reaction of phosphine ligand endo,endo-2,3-bis(diphenylphosphinomethyl)-5-norbornene (dpmn) with PtCl2(cod) and PtMe2(cod) yields PtCl2(dpmn) (2) and PtMe2(dpmn) (4), respectively. Treatment of 2 with excess MeLi or MeMgCl also furnishes 4 in good yield. Both new platinum compounds have been isolated and characterized by NMR spectroscopy (1H and 31P), elemental analyses, and X-ray crystallography. 2 Crystallizes, as the CH2Cl2 solvate, in the orthorhombic space group Pnma, a = 18.062(3) ?, b = 16.602(3) ?, c = 11.088(2) ?, V = 3,324.7(9) ?3, Z = 4, D cacl = 1.681 mg/m3; R = 0.0432, R w = 0.0759 for 3,755 observed reflections with I > 2σ(I). 4 Crystallizes, as the CH2Cl2 solvate, in the orthorhombic space group Pnma, a = 17.969(3) ?, b = 16.689(3) ?, c = 11.237(2) ?, V = 3,370(1) ?3, Z = 4, D cacl = 1.610 mg/m3; R = 0.0268, R w = 0.0665 for 4,098 observed reflections with I > 2σ(I). The solid-state structures of 2 and 4 confirm the coordination of the platinum(II) center by the seven-membered chelating dpmn ligand; 2 and 4 represent the first structurally characterized examples of organometallic compounds based on the endo,endo-2,3-bis(diphenylphosphinomethyl)-5-norbornene ligand. Graphical Abstract  The new platinum(II) compounds PtCl2(dpmn) (2) and PtMe2(dpmn) (4) have been synthesized, and their structures established by NMR spectroscopy (1H and 31P) and X-ray crystallography. Compounds 2 and 4 are the first structurally characterized examples of organometallic compounds containing the endo,endo-2,3-bis(diphenylphosphinomethyl)-5-norbornene (dpmn) ligand.
Michael G. Richmond (Corresponding author)Email:
  相似文献   

18.
F. Amaral  L.C. Costa 《Journal of Non》2011,357(2):775-781
CaCu3Ti4O12 (CCTO) has challenged for the last few years the scientific community due to its large dielectric constant, which is almost temperature and frequency independent, from 100 K to 400 K and from 1 kHz to 1 MHz, respectively. This makes the material desirable for many electronic applications. However, the dissipation factor is very large, with tan δ values, at room temperature and 1 kHz, higher than 0.1.In our work we report how the addition of TeO2 lowers the dielectric loss and, although there is a decrease of dielectric constant of doped samples relatively to the undoped one, high dielectric constant values are still being reached. The sample of doped CCTO with 1.5% of TeO2 by weight, presents, at room temperature and 60 kHz, a large dielectric constant, over 3000, and a dissipation factor around 0.09, which represents a decrease on tan δ over 30% relatively to the CCTO undoped sample. Two relaxation processes were identified for all the samples, one at MHz region and the other one at low frequency region (< 1 kHz). DC bias voltage was applied up to 40 V and a strong dc bias influence on the low frequency region was observed both at dielectric and impedance responses of the undoped sample, which was much weaker than the dc bias effects on the 4% Te doped sample.Dielectric measurements will be discussed and correlated with the samples' microstructure, supported on internal barrier layer capacitance (IBLC) and surface barrier layer capacitance (SBLC) models.  相似文献   

19.
The paper studies the materials from ZnO–TiO2–B2O3 ternary system, obtained by sol–gel method [1] and [2], starting from organic and inorganic precursors. The obtained samples are investigated by FTIR and Raman spectroscopy, which provide structural information, at molecular level. FTIR absorption maxima are identified and discussed according to literature data. Raman spectra are acquired by a Raman Jasco NRS-3100 spectrometer, at 532 nm wavelength and put in evidence characteristic vibration modes for all three oxide components. ESR spectra were plotted with the aid of a JES-FA 100-JEOL Japan spectrometer and titanium surrounding is investigated.  相似文献   

20.
The Li replacement including the Li2O replaced by other oxides and the expensive Li2CO3 replaced by low-cost spodumene mineral was studied to lower the product cost of (Li2O-Al2O3-SiO2, LAS) glass ceramic, and the effects of Li replacement on the nucleation, crystallization and microstructure of LAS glass were investigated by the differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that Li2O replacement increases the crystallization activation energy, lowers the crystal growth, and increases the nucleation and crystallization temperature by restraining the formation of crystalline phases. The Li2CO3 replacement decreases the crystallization activation energy, promotes the crystal growth, without affecting the nucleation, and lowers the crystallization temperature by adding some beneficial compositions with mixed alkali effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号