首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processes going on in silver-doped GeO2 films during air-heating were investigated by XPS, TEM, IR and UV-visible spectroscopy methods. Silver was shown to interact with the GeO2 matrix at 500-600 °C to give silver germanate which was decomposed on further heating to form GeO2 and silver nanoparticles, 10-35 nm in size, absorbing in the plasmon resonance region (λmax = 415 nm). The silver nanoparticles are located deep in the films and encapsulated by oxide particles.  相似文献   

2.
Ultralow density silica aerogels prepared with PEDS   总被引:1,自引:0,他引:1  
Xu Chao  Shen Jun  Zhou Bin 《Journal of Non》2009,355(8):492-780
This paper deals with the synthesis of ultralow density silica aerogels using polyethoxydisiloxanes (PEDS) as the precursor via sol-gel process followed by supercritical drying using ethanol solvent extraction. Ultralow density silica aerogels with 5 mg/cc of density were made for the molar ratio by this method. A remarkable reduction in the gelation time was observed by the effect of the catalyst NH4OH at room temperature. The microstructure and morphology of the ultralow density silica aerogels were characterized by the specific surface area, SBET, SEM, TEM and the pore size distribution techniques. The results show that the diameter of the silica particles is about 13 nm and the pore size of the silica aerogels is about several nm. The specific surface area of the silica aerogel is 339 m2/g and the specific surface area, pore volume and average pore diameter decrease with increasing density of the silica aerogel.  相似文献   

3.
This work demonstrates the synthesis of hydrophilic and hydrophobic high surface area silica aerogel beads with a large pore volume. Wet gel silica beads were modified and heat-treated under atmospheric pressure after modification of the surface by trimethychlorosilane (TMCS). The effects of heat treatment on the physical (hydrophobicity) and textural properties (specific surface area, pore volume, and pore size) of silica aerogel beads were investigated. The results indicated that hydrophobicity of the silica aerogel beads can be maintained up to 400 °C. The hydrophobicity of the silica aerogel beads decreased with increasing temperature in the range of 200-500 °C, and the beads became completely hydrophilic after heat treatment at 500 °C. The specific surface area, cumulative pore volume, and pore size of the silica aerogel beads increased with increasing temperature. Heating the TMCS modified bead gel at 400 °C for 1 h resulted in silica aerogel beads with high surface area (769 m2/g), and large cumulative pore volume (3.10 cm3/g). The effects of heat treatment on the physical and textural properties of silica aerogel beads were investigated by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric and differential analysis (TG-DTA), Fourier-transform infrared spectroscopy (FT-IR), and Brunauer, Emmett and Teller (BET) and BJH nitrogen gas adsorption and desorption methods.  相似文献   

4.
Plasmonic aerogel containing 50 nm gold nanoparticles is made using a modified 2-step method that maintains control over the gel time while preventing nanoparticle aggregation. Strong narrow surface plasmon resonances verify that the nanoparticles are well dispersed within the silica matrix, and enable applications in sensing, SERS, nonlinear optics or plasmonic gain. Discrepancies between measured and simulated resonance wavelengths are attributed to the breakdown of the effective index approximation, due to the short-scale penetration of the resonance electric field into the host medium.  相似文献   

5.
《Journal of Non》2005,351(40-42):3347-3355
The structure of polymer/colloid mixed silica sono-aerogels has been studied by SAXS, N2 adsorption–desorption and Hg porosimetry. The system is described as a composite in which the polymeric phase (sonogel) is the matrix. The structure of this phase prepared with ultrasounds is very fine consisting in aggregates of ∼5 nm radius formed by elementary particles of 1 nm radius. Including Ca(II) into the silica atomic network causes enlarging the average size of the particle more than three times with respect to its size in its pure silica counterpart. The stiffness increases as well by 50%. The size of the particles and pores is also affected by the ultrasound dose applied; the higher for the larger the particles. On the other hand, a low dose produces a rough particle surface.  相似文献   

6.
《Journal of Non》2006,352(36-37):3879-3886
Aqueous phase metal nanoparticles were formed by laser ablation and subsequently encapsulated in sol–gel derived alkyl-siloxane solids. The resulting nanoparticles were encapsulated into a mixture of hydrolyzed tetramethoxysilane and 3-glycidoxypropyltrimethoxysilane by addition of nanoparticle-containing solutions. Silanol condensation and epoxy-amine crosslinking was used to solidify the matrix. The production of gold nanoparticles and their fate upon encapsulation were characterized by the evolution of the surface plasmon absorbance band and by transmission electron microscopy (TEM). Encapsulation resulted in an increase in particle size and size distribution as well as a significant red shift in the surface plasmon absorbance band from 520 nm to 545 nm at low nanoparticle concentrations and 565 at high nanoparticle concentrations. This is attributed to chemical interactions with methanol and enhanced nanoparticle–nanoparticle interactions.  相似文献   

7.
The distribution and characteristics of surface cracks (i.e., sub-surface damage or scratching) on fused silica formed during grinding/polishing resulting from the addition of rogue particles in the base slurry has been investigated. Fused silica samples (10 cm diameter × 1 cm thick) were: (1) ground by loose abrasive grinding (alumina particles 9-30 μm) on a glass lap with the addition of larger alumina particles at various concentrations with mean sizes ranging from 15 to 30 μm, or (2) polished (using 0.5 μm cerium oxide slurry) on various laps (polyurethane pads or pitch) with the addition of larger rogue particles (diamond (4-45 μm), pitch, dust, or dried Ceria slurry agglomerates) at various concentrations. For the resulting ground samples, the crack distributions of the as-prepared surfaces were determined using a polished taper technique. The crack depth was observed to: (1) increase at small concentrations (>10−4 fraction) of rogue particles; and (2) increase with rogue particle concentration to crack depths consistent with that observed when grinding with particles the size of the rogue particles alone. For the polished samples, which were subsequently etched in HF:NH4F to expose the surface damage, the resulting scratch properties (type, number density, width, and length) were characterized. The number density of scratches increased exponentially with the size of the rogue diamond at a fixed rogue diamond concentration suggesting that larger particles are more likely to lead to scratching. The length of the scratch was found to increase with rogue particle size, increase with lap viscosity, and decrease with applied load. At high diamond concentrations, the type of scratch transitioned from brittle to ductile and the length of the scratches dramatically increased and extended to the edge of the optic. The observed trends can be explained semi-quantitatively in terms of the time needed for a rogue particle to penetrate into a viscoelastic lap. The results of this study provide useful insights and ‘rules-of-thumb’ relating scratch characteristics observed on surfaces during optical glass fabrication to the characteristics of the rogue particles causing them and their possible source.  相似文献   

8.
The limiting constraint in a growing number of nano systems is the inability to thermally tune devices. Silica aerogel is widely accepted as the best solid thermal insulator in existence and offers a promising solution for microelectronic systems needing superior thermal isolation. In this study, thin-film silica aerogel films varying in thickness from 250 to 1280 nm were deposited on SiO2 substrates under a variety of deposition conditions. These samples were then thermally characterized using the 3ω technique. Deposition processes for depositing the 3ω testing mask to the sample were optimized and it was demonstrated that thin-film aerogel can maintain its structure in common fabrication processes for microelectromechanical systems. Results indicate that thin-film silica aerogel can maintain the unique, ultra-low thermal conductivity commonly observed in bulk aerogel, with a directly measured thermal conductivity as low as 0.024 W/m-K at temperature of 295 K and pressure between 0.1 and 1 Pa.  相似文献   

9.
J. Chandradass 《Journal of Non》2008,354(34):4115-4119
Silica aerogel blankets have been synthesized by ambient drying technique using cheap water glass as the silica source and glass wool modified by alumina sol. One step solvent exchange and surface modification were simultaneously conducted by immersing the wet hydrogel blanket in EtOH/TMCS/hexane solution. The synthesized silica aerogel blanket was light with the density of 0.143-0.104 g/cm3 and 89.4-95% porosity. The microstructure of silica aerogel blanket exhibits a porous structure consisting of glass fibers of diameter ∼2.5 μm interconnected with solid silica clusters (5-20 μm).  相似文献   

10.
The effect of heat treatment of the germano-silicate glass optical fiber incorporated with PbTe quantum dots on the absorption characteristics was investigated. Incorporation of the PbTe QDs in the fiber core was confirmed by the absorption peaks that appeared at 687 nm and 1055 nm and their shift upon heat treatment. The absorption peak was found to shift linearly toward a longer wavelength after heat treatment at 700 °C, 1000 °C, and 1100 °C for 1 h. The red shift of the excitonic absorption peak was attributed to the increase in the average size of the PbTe QDs in the fiber core.  相似文献   

11.
The Ag-exchanged commercial soda-lime silicate glasses were treated by three methods: thermal annealing, UV-laser irradiation, and X-ray irradiation, in order to promote the silver nanoclusters formation. Absorption spectrometry and electron spin resonance measurement results indicated that the silver ions transferred to silver atoms after the above three treatments. The silver atoms diffused and then aggregated to become nanoclusters after thermal annealing in air, or after UV-laser irradiation. However, X-ray irradiation, which induced defects and reduction of Ag0 atoms, would not promote the silver nanocluster formation. After annealing at 600 °C for 45 h, the spherical nanoclusters with a diameter of 3–8 nm were formed. The nanoclusters with a diameter of about 2 nm were formed after 30 min UV-laser irradiation without subsequent heating. The surface plasmon resonance peak position of silver nanoclusters changed from 411 nm after thermal annealing to 425 nm after UV-laser irradiation. The peak position shift was due to the nanoclusters size difference.  相似文献   

12.
Resonant Raman effects are studied for CdSxSe1−x nanoparticles in a silicate glass matrix in order to explore new possibilities of Raman amplification for telecommunication fibers. Nanoparticles with diameters ranging from less than 2 nm up to 6 nm are excited with the 458 nm, 488 nm and 633 nm laser lines corresponding both to resonance and off-resonance conditions. Due to confinement effects the resonance conditions are achieved at a given frequency by varying the size of the nanoparticles. In resonance no enhancement is observed for the silicate glass matrix but the (1LO-CdS), (2LO-CdS), (1LO CdSe + 1 LO CdS) modes are strongly enhanced showing the possibility of resonant Raman amplification of the discrete frequencies of the LO modes and of their overtones.  相似文献   

13.
Masato Noguchi 《Journal of Non》2011,357(15):2966-2969
Copper nanoparticles were formed by photoirradiation of doped sol-gel silica, which was prepared by mixing Cu2+ ions, ethylenediaminetetraacetic acid (EDTA), and riboflavin into sol-gel solutions of tetramethoxysilane. The doped silica exhibited broad absorption bands at 442 nm due to riboflavin and 740 nm due to Cu2+-EDTA complexes. After photoirradiation, the sol-gel silica showed a reddish brown color and the absorption peak around 580 nm due to the plasmon band of copper nanoparticles. Copper nanoparticles were also formed from other sol-gel silica doped with lumichrome or lumiflavin. The photostability of the flavins dyes obtained from the fluorescence intensities was in the order of lumichrome > lumiflavin > riboflavin in the sol-gel silica without Cu2+ ions. On the other hand, the fluorescence intensities were considerably reduced by photoirradiation of the sol-gel silica doped with Cu2+ ions, irrespective of the flavin dyes doped. Considering the absorption and fluorescence spectral changes during the photoirradiation, we concluded that copper nanoparticles are produced by the photoinduced electron transfer from the flavin dyes in the sol-gel silica.  相似文献   

14.
K.M. Lim  M.C. Kim 《Journal of Non》2005,351(1):75-83
Electromagnetic wave absorption properties of amorphous alloy-epoxy composites have been investigated with various amorphous alloy particle sizes and fractions in the 45 MHz to 10 GHz frequency range. The fraction of amorphous alloy in amorphous alloy-epoxy composites varied from 30 to 60 vol.% at a fixed amorphous alloy particle size and the size of amorphous alloy particles was varied from several μm to 125 μm at a fixed amorphous alloy particle fraction. Complex permeability (μ), permittivity (ε) of composites and reflection loss were measured by the reflection/transmission technique. The composites with small sized amorphous alloy particles (<26 μm) and a small amount of particles (<50%) had good reflection loss values less than −20 dB with thin thickness (<1 cm). The decreasing amorphous alloy particle size and fraction in amorphous alloy-epoxy composites resulted in a high minimum reflection loss frequency and small minimum reflection loss thickness. Variations of minimum reflection loss frequency and thickness of composites resulted from variations of materials constants such complex permeability, permittivity and resonance frequency. Changes in materials variables were due to the demagnetization effect and the eddy current effect, which operate differently in composites according to amorphous alloy particle size and fraction.  相似文献   

15.
S. Basu 《Journal of Non》2006,352(5):380-385
Iron nanoparticles of diameter ∼5 nm were produced within a gel-derived silica glass by reducing a suitable gel composition. By heating these composites in the temperature range 573-973 K, Fe3O4 shells of a few nanometer thickness were grown around the iron nanoparticles. Three peaks were observed in the optical absorption spectra of the nanocomposites when they were dispersed in ethyl alcohol. The first one around 300 nm was caused by plasma resonance absorption of unoxidized iron particles; the second was shown to be due to the core-shell structure with different permittivities of the two regions and the third one was ascribed to a d-d transition. Detailed analyses of the second peak showed that the extracted values of electrical conductivity were below Mott’s minimum metallic conductivity for iron in the case of particles with diameters below ∼2.5 nm.  相似文献   

16.
In this work, coloured glasses were produced based on the synthesis of gold and silver nanoparticles by the sol-gel process having in mind their application in art works. Gold and silver were used separately or as a mixture by varying the mole fractions in order to get a range of colours from yellow to red. The gold and silver nanoparticles were prepared by the reduction of tetrachloroauric acid and silver nitrate with sodium citrate in aqueous solutions which were further introduced in the sol-gel system. Attention was focused on the thermal treatment of the sol-gel samples. Different temperatures were used in order to determine their influence on the obtained colour. The glasses were characterized by UV-Vis absorption spectroscopy and the size of the nanoparticles was examined by transmission electron microscopy (TEM).The range of colours mentioned above is obtained either by preparing nanoparticles of each metal and mixing them or by preparing nanoparticles from solutions containing initially ions of both metals. In the former case, two surface plasmon resonance (SPR) bands were observed for temperatures below 200 °C while higher temperatures promote the formation of alloys between the Ag and Au nanoparticles. In the latter case, only one SPR band is observed and the nanoparticle size distribution is narrower. The results were explained by nanoparticle aggregation promoted by temperature. Glasses containing only Ag did not present the typical yellow colour above 300 °C but it was shown that the colour could be stabilized if Au was added in small amounts (Au/Ag molar ratio 0.1).  相似文献   

17.
We developed a growth method for forming a GaAs quantum well contained in an AlGaAs/GaAs heterostructure nanowire using selective-area metal organic vapor phase epitaxy. To find the optimum growth condition of AlGaAs nanowires, we changed the growth temperature between 800 and 850 °C and found that best uniformity of the shape and the size was obtained near 800 °C but lateral growth of AlGaAs became larger, which resulted in a wide GaAs quantum well grown on the top (1 1 1)B facet of the AlGaAs nanowire. To form the GaAs quantum well with a reduced lateral size atop the AlGaAs nanowire, a GaAs core nanowire about 100 nm in diameter was grown before the AlGaAs growth, which reduced the lateral size of AlGaAs to roughly half compared with that without the GaAs core. Photoluminescence measurement at 4.2 K indicated spectral peaks of the GaAs quantum wells about 60 meV higher than the acceptor-related recombination emission peak of GaAs near 1.5 eV. The photoluminescence peak energy showed a blue shift of about 15 meV, from 1.546 to 1.560 eV, as the growth time of the GaAs quantum well was decreased from 8 to 3 s. Transmission electron microscopy and energy dispersive X-ray analysis of an AlGaAs/GaAs heterostructure nanowire indicated a GaAs quantum well with a thickness of 5−20 nm buried along the 〈1 1 1〉 direction between the AlGaAs shells, showing a successful fabrication of the GaAs quantum well.  相似文献   

18.
The effect of temperature on the oxalic acid catalyzed sono-hydrolysis of tetramethoxysilane (TMOS) was studied by means of a heat flux calorimetric method. The activation energy of the process was measured as (24.5 ± 0.8) kJ/mol in the temperature range between 10 and 50 °C. The structural characteristics of the resulting sonogels, after long period of aging in saturated conditions, were studied by means of small angle X-ray scattering. The structure can be described as formed by ∼2.7 nm mean size mass fractal-like aggregates (clusters) of primary silica particles of ∼0.3 nm mean size, all imbibed in a liquid phase. The average mass fractal dimension of the clusters was found to be 2.58. The primary particle density was estimated as 2.23 g/cm3, in good agreement with the value frequently quoted for fused silica. The volume fraction of the clusters in the saturated sonogels was estimated as about 28%. The moment in which the meniscus of the liquid phase penetrates into the clusters under rapid evaporation process has been detected by an inflection in the first derivative of the curve of weight loss in a simple thermogravimetric test.  相似文献   

19.
Mixed-metal oxide aerogels for oxidation of volatile organic compounds   总被引:1,自引:0,他引:1  
Aerogels of 100% silica, 8 wt% Zr in silica, 5 wt% V in silica and 100% zirconia were synthesized and tested as oxidation catalysts in the temperature range of 300–700°C for destruction of volatile organic compounds. The silica-based aerogels were all amorphous and had surface areas above 600 m2/g after oxidation. The zirconia aerogel was crystalline with a relatively low surface area of 250 m2/g. As catalysts for oxidation (using O2 in He) of CH3OH to CO2, the zirconia aerogel exhibited the highest activity and best selectivity while the silica aerogel exhibited the poorest. Inclusion of Zr at levels as low as 8 wt% into the silica aerogel framework produced activities and selectivities which were very much like the zirconia aerogel. These properties have the impact of producing a Zr based catalyst with high activity, but with thermal stability afforded by Zr–silica mixtures.  相似文献   

20.
Batches designed to simulate nuclear high-level waste glass were compressed into pellets that were heated at 5 K/min and photographed. Three types of batches were prepared, each with different amounts of nitrates and carbonates. The all-nitrate batches were prepared with varying amounts of sucrose. The mixed nitrate-carbonate batches were prepared with silica particles ranging in size from 5 to 195 μm. One batch containing only carbonates was also tested. Sucrose addition had little effect on expansion, while the size of silica was very influential. Sucrose addition reduced primary foam for batches containing 5-μm silica, but had no effect on batches containing larger particles. Excessive amounts of sucrose increased secondary foam. The 5-μm grains had the strongest effect, causing both primary and secondary foam to be generated, whereas only secondary foam was produced in batches with grains of 45 μm and larger. We suggest that the viscosity of the melt and the amount of gas evolved are the main influences on foam production. As more gas is produced in the melt and as the glass becomes less viscous, gas bubbles coalesce into larger cavities until the glass can no longer contain the bubbles and they burst, causing the foam to collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号