首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on experimental collisional relaxation of the J = 24 ← 23 line of HC314N, located near 218.3 GHz, induced by nitrogen, hydrogen, and helium. The measurements were carried out at selected temperatures in the 235-350 K range using a video-type spectrometer. The foreign gas broadening parameters and their temperature dependences were determined assuming Voigt lineshape profiles and the usual T−n temperature law. The experimental broadening parameters are compared with results derived using the ATC collisional formalism.  相似文献   

2.
3.
An investigation of the absorption of CH3CN at 63 lines of a tunable waveguide CO2 laser has been performed using the optothermal technique.  相似文献   

4.
The pure rotational J + 1 ← J transitions, with J = 0, 1, 3-8, of H13CN have been observed in the millimeter- and submillimeter-wave region using the Lamb-dip technique to resolve the hyperfine structure due to H, 13C, and 14N. The present observations allow us to provide for the first time the spin-rotation constant of 13C and the spin-spin interaction constant S12 (between H and 13C) as well as to remarkably improve the quadrupole coupling and spin-rotation constants of 14N. In addition, a good empirical estimation of CI(H), based on ab initio calculations, has also been provided. Furthermore, our frequencies together with previous data permit to determine the most accurate ground state rotational parameters known up to now.  相似文献   

5.
Using a high-resolution tunable diode laser photoacoustic spectrometer, self-, N2 and O2 pressure broadening coefficients for the first 11 transitions of 12C16O2 in the R branch of the (30012) ← (00001) overtone band at the 6348 cm−1 have been revisited at room temperature (∼298 K). Air-broadening parameters have also been calculated from the N2 and O2 measurements. The dependence of the broadening on rotational quantum number m is discussed. The recorded lineshapes are fitted with standard Voigt line profiles in order to determine the collisional broadening coefficients of carbon dioxide transitions. The results are compared to our previous measurements and to the values reported in the HITRAN04 database and by other research group with a different spectroscopic technique.  相似文献   

6.
The ground state rotational spectrum of the 14NF3 and 15NF3 isotopic species of nitrogen fluoride has been observed in the ∼450-810 GHz frequency range. This investigation allowed us to improve the rotational parameters for both isotopologues. In particular, for the first time the K = 3 line splitting parameter and the sextic centrifugal distortion constants have been determined for 15NF3.  相似文献   

7.
The N2- and O2-broadening effect have been investigated for 10 absorption lines of the CO2 (3001)III ← (0000) band centered at 6231 cm−1, in the range from P(28) to R(28) by a near-infrared diode-laser spectrometer. We have analyzed the observed line profiles with the Galatry function, and determined the N2- and O2-broadening coefficients precisely. The air-broadening coefficients for these lines have been derived. The present results are compared with those of the previous studies for this band and with some of the other bands.  相似文献   

8.
The 0310 ← 0110 parallel Q branch of N2O has been studied at 297 K and over the pressure range 1-130 torr. Absorption spectra were recorded using a high resolution (1.5 MHz or 5 × 10−5 cm−1) and high signal-to-noise (>3500:1) mid-infrared spectrometer based on difference-frequency infrared generation in AgGaS2. In the low-pressure range (1-11 torr) we obtained accurate values for the line strengths, the broadening coefficients, the weak mixing coefficients, and the overall shifting of the branch. The medium pressure results, ranging from 23 to 130 torr, were analyzed by treating the band as a whole, using a relaxation matrix formalism, based on an energy gap scaling law. We find, effectively, that only 36% of the rotationally inelastic collisions are associated with Q branch mixing, the rest presumably being associated with Q-P and Q-R mixing in the same vibrational band. The pressure shifting coefficient of the 0310 ← 0110 Q branch as a whole was also determined and found to be 5.8 × 10−3 cm−1/atm towards lower frequencies.  相似文献   

9.
Collisional relaxation has been considered for millimeter lines of carbon monoxide at room temperature. Accurate measurements of carbon dioxide- and rare gases-broadened widths have been performed on the J = 3 ← 2 rotational line of 12CO by using a video-type spectrometer. Measurements of nitrogen-, oxygen-, and xenon-broadened widths of the J = 5 ← 4 rotational line of 13CO were also carried by using a frequency-modulated spectrometer. A lineshape study performed on all the investigated binary systems provide confirmation that Voigt profile is not a suitable model to analyse experimental lines in the millimeter-waves region. On one hand, using this profile in the low pressure range, i.e. in the Doppler regime, the retrieved collisional linewidths do not follow a linear variation with the perturbing gas pressure. On the other hand, regardless of the pressure, lineshapes exhibit a narrowed profile. An accurate analysis of the pressure dependence of relaxation rates show that the Galatry profile is not appropriate and that experimental lineshapes are actually Speed Dependent Voigt profiles. Accurate broadening parameters were retrieved from this profile and compared to previous reported values and predictions calculated from the Robert-Bonamy formalism. Finally a variation of the ratio of relaxation speed dependence to broadening parameters versus relative masses of the collision partners is presented.  相似文献   

10.
Room temperature values for self-broadened and hydrogen-broadened Lorentz halfwidth coefficients, and self and hydrogen pressure-induced shift coefficients have been measured for transitions with rotational quantum number m ranging between −24 and 24 in the 2 ← 0 band of 12C16O. The spectra were recorded with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak. The analysis was performed using a multispectrum nonlinear least squares technique. We have compared our results with similar measurements published recently.  相似文献   

11.
For the purpose of atmospheric applications, we have measured N2- and O2-induced broadenings and shapes of rotational lines of N2O in the 235-350 K temperature range, precisely the J=8←7, J=22←21, and J=23←22 lines, located near 201, 552, and 577 GHz, respectively. The analysis of experimental lineshapes shows up significant deviations from the Voigt profile, which are characteristic of line narrowing processes. In a first step, the Voigt profile was considered for the determination of pressure broadening parameters and of their temperature dependencies. Results are in good agreement with the dependence from rotational quantum number previously observed for other rotational and rovibrational lines. They are well explained by calculations based on a semiclassical formalism that includes the atom-atom Lennard-Jones potential in addition to electrostatic interactions up to hexadecapolar contributions. In a second step, observed lineshapes were analyzed by using the Galatry profile and a speed-dependent Voigt profile. The nonlinear pressure behavior observed for the diffusion rate β involved in the Galatry profile leads to rule out the possible role of velocity/speed changing collisions, and to infer that discrepancies from the Voigt profile result from the dependence of relaxation rates on molecular speeds. This interpretation is supported by the comparison of optical and kinetic radii and confirmed by theoretical calculations of relaxation rates. Finally, it can be claimed that, for the N2O-N2 and N2O-O2 systems, deviations from the Voigt profile are explained by a speed-dependent Voigt profile.  相似文献   

12.
We report the iron isotope effect on a transition temperature (Tc) in an optimally-doped (Ba,K)Fe2As2 (Tc = 38 K) and SmFeAsO1−y (Tc = 54 K) superconductors. In order to obtain the reliable isotope shift in Tc, twin samples with different iron isotope mass are synthesized in the same conditions (simultaneously) under high-pressure. We have found that (Ba,K)Fe2As2 shows an inverse iron isotope effect αFe = −0.18 ± 0.03 while SmFeAsO1−y shows a small iron isotope effect αFe = −0.02 ± 0.01, where the isotope exponent α is defined by Tc  Mα (M is the isotopic mass). The results show that αFe changes in the iron-based superconductors depending on the system. The distinct iron isotope effects imply the exotic coupling mechanism in the iron-based superconductors.  相似文献   

13.
The structures and energetics of the chemisorbed CO2, CHx species and H as well as C2H4 on the α-Mo2C(0 0 0 1) surface have been computed at the GGA-RPBE level of density functional theory. It is found that CO2 adsorbs dissociately into CO and O, in agreement with the experimental finding. The adsorbed O, CHx and H species prefer the site of three surface molybdenum atoms over a second layer carbon atom (VC site). On the basis of the calculated adsorption energies of CHx and H, the sequential dehydrogenation of CH4 and the C/C coupling reaction of CHx have been discussed.  相似文献   

14.
Guided by a previous microwave study (9–35 GHz), the rotational spectrum of both chlorine isotopologues of chloroiodomethane in its vibrational and electronic ground state has been re-investigated in the microwave region and extended to the millimeter/submillimeter-wave region. Weak a-type transitions have been recorded by Fourier transform microwave spectroscopy below 20 GHz whilst strong b-type rotational transitions have been recorded between 15 and 646 GHz, corresponding to energy levels with J″ ≤ 108 and . Molecular constants including those describing the hyperfine structures owing to the two halogen atoms were accurately determined for both species from the least-squares analysis of a total of 1475 distinct transition frequencies (of which 906 belong to the CH2I35Cl isotopologue). The two sets of rotational constants allowed us to derive an r0 structure of CH2ICl.  相似文献   

15.
In this paper, we report measured Lorentz N2-broadening and N2-induced pressure-shift coefficients of CH3D in the ν2 fundamental band using a multispectrum fitting technique. These measurements were made by analyzing 11 laboratory absorption spectra recorded at 0.0056 cm−1 resolution using the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectra were obtained using two absorption cells with path lengths of 10.2 and 25 cm. The total sample pressures ranged from 0.98 to 402.25 Torr with CH3D volume mixing ratios of 0.01 in nitrogen. We have been able to determine the N2 pressure-broadening coefficients of 368 ν2 transitions with quantum numbers as high as J″ = 20 and K = 16, where K″ = K′ ≡ K (for a parallel band). The measured N2-broadening coefficients range from 0.0248 to 0.0742 cm−1 atm−1 at 296 K. All the measured pressure-shifts are negative. The reported N2-induced pressure-shift coefficients vary from about −0.0003 to −0.0094 cm−1 atm−1. We have examined the dependence of the measured broadening and shift parameters on the J″, and K quantum numbers and also developed empirical expressions to describe the broadening coefficients in terms of m (m = −J″, J″, and J″ + 1 in the QP-, QQ-, and QR-branch, respectively) and K. On average, the empirical expressions reproduce the measured broadening coefficients to within 4.7%. The N2-broadening and pressure-shift coefficients were calculated on the basis of a semiclassical model of interacting linear molecules performed by considering in addition to the electrostatic contributions the atom-atom Lennard-Jones potential. The theoretical results of the broadening coefficients are in good overall agreement with the experimental data (8.7%). The N2-pressure shifts whose vibrational contribution is derived from parameters fitted in the QQ-branch of self-induced shifts of CH3D, are also in reasonable agreement with the scattered experimental data (20% in most cases).  相似文献   

16.
Line profiles of the J = 1-0 transition of the hydrogen chloride, H35Cl and H37Cl isotopomers, were measured with a BWO-based submillimeter-wave spectrometer at AIST in real form: three hyperfine transitions for each isotopomer, i.e., total six lines at 625 and 626 GHz. The effect of foreign gases on the broadening and shift was determined for N2, O2, and Ar. The modified Voigt function was applied as the line shape function for preliminary analysis, where the collisional-narrowing effect was clearly observed. In the final analysis, we applied the Galatry function and determined the integral intensity, line center position, Lorentzian width, and contraction parameter for each absorption line. The magnitudes of the foreign-gas pressure-broadening coefficients decrease in order of N2, O2, and Ar. The line-shift coefficients were clearly observed, the magnitudes of which decrease in order of Ar, O2, and N2. The pressure dependence of contraction parameter was determined, although with poor precision.  相似文献   

17.
Line broadening coefficients have been calculated, at room temperature, for lines in the P and R branches of the ν2 band of monodeuterated methane. A properly symmetrized semiclassical model with parabolic relative trajectories has been used. Two interaction potential models have been considered. The first is a Lennard-Jones type atom-atom potential, while the second one was derived from ab initio calculations. The calculated line widths were compared to the available experimental data and a satisfactory agreement was found, although the model contains no other adjustable parameters than the four atomic Lennard-Jones ones. Nonetheless, failures of calculations have also been evidenced for the highest rotational quantum numbers.  相似文献   

18.
The self-broadening coefficients of 33 rovibrational lines in the ν2 and ν5 bands of 12CH3F were measured at a sample temperature of 183 K using a diode-laser spectrometer. We have also realized the measurement of these coefficients at room temperature for 10 of these lines in order to determine their temperature dependence. These results were obtained by fitting to the experimental profile the Voigt lineshape and the Rautian and Galatry models taking into account the collisional narrowing. Calculations of the self-broadening coefficients were also performed for the same temperatures from a semiclassical model involving only electrostatic interactions in the intermolecular potential. The calculated values are significantly larger than the experimental data for both temperatures but the J-dependences of the self-broadenings are well reproduced. Moreover, the theoretical temperature dependence of these coefficients is in good agreement with that derived from the measurements.  相似文献   

19.
Thermally induced phase transitions (20-1000 °C) in the substrates and binary mixtures of CH3COOLi·2H2O(1)-MgHPO4·3H2O(11) have been analysed. Changes taking place on dehydration and thermal dissociation of binary mixtures prepared with percent molar ratios of 90-10% were studied by differential thermal analysis (TG, DTG, DTA), IR-spectroscopy and WAXS.The above-mentioned substrates changed their structure when heated for 1 h at 500 or 1000 °C. CH3COOLi·2H2O(1) (ID: 23-1171) changed the structure at 500 °C to that of Li2CO3 (ID: 22-1141), while at 1000 °C the structure was impossible to analyse as the compound reacted both with porcelain and with platinum (crucible materials). MgHPO4·3H2O(11) (Newberyite, ID: 35-780, 19-762) changed its structure at 500 °C to amorphous phase and at 1000 °C to Mg2P2O7 (ID: 32-626).The following compounds were assayed in the respective binary mixtures heated at 500 °C for 1 h: 70% (1)-30%(11): LiMgPO4 (ID: 18-735), MgO (ID: 4-829); 50%(1)-50%(11): LiMgPO4 (ID: 18-735), Li3PO4 (ID: 25-1030); 30%(1)-70%(11): LiMgPO4 (ID: 32-574); binary mixtures heated at 1000 °C contained the following compounds: 70%(1)-30%(11): LiMgPO4 (ID: 32-574,18-735), Li3PO4 (ID: 15-760,25-1030), MgO (ID: 4-829); 50%(1)-50%(11): LiMgPO4 (ID: 32-574, 18-735), MgO (ID: 4-829); 30%(1)-70%(11): LiMgPO4 (ID: 18-735, 32-574), Mg2P2O7 (ID: 22-1152, 8-38), Li4SiO4 (37-1472).  相似文献   

20.
Twenty-seven new cw far infrared laser lines with wavelengths between 137 and 988m have been observed from optically pumping C2H3F, C2H3Cl, C2H3Br, C2H5F, C2H3CN, CH2CF2, HCOOH and CH3Br with a CO2 laser. The wavelengths of these FIR laser lines were determined together with their optimum pressures and relative intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号