首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The iron trithiocarbonato complex CpFe(CO)2S-SCS2Ph) (1a) and its selenodithiocarbonato analogue CpFe(CO)2Se-SeCS2Ph) (1b) were generated by room temperature reactions of (μ-Ex)[CpFe(CO)2]2 (E = S; x = 2, 3. E = Se; x = 1) with PhSC(S)Cl. These compounds can be converted into the complexes CpFe(CO)(κ2S,E-ECS2Ph) [E = S (2a), Se (2b)], in which the trithiocarbonato or the selenodithiocarbonato ligand is bonded to the iron in a chelate form, under photolytic conditions. The composition and structure of all products have been verified by elemental analyses, IR and 1H NMR spectroscopies. The crystal structures for compounds 1a, 1b, and 2b show a three-legged piano-stool configuration at Fe in each complex. The spectroscopic and structural data in this work are commensurate with the electronic factor of the S- and Se-donor ligands.  相似文献   

2.
The potential energy surface for the reaction of CH3S with CO was calculated at the G3MP2//B3LYP/6-311++G(d,p) level. The rate constants for feasible channels leading to several products were calculated by TST and multichannel-RRKM theory. The results show that addition–elimination mechanism is dominant, while hydrogen abstraction mechanism is uncompetitive. The major channel is the addition of CO to CH3S leading to an intermediate CH3SCO which then decomposes to CH3 + OCS. In the temperature range of 200–3000 K, the overall rate constants are positive temperature dependence and pressure independence, and it can be described by the expression as k = 1.10 × 10−16T1.57exp(−3359/T) cm3 molecule−1 s−1. At temperature between 208 and 295 K, the calculated rate constants are in good agreement with the experimental upper limit data. At T = 1000 and 2000 K, the major product is CH3 + OCS at lower pressure; while at higher pressure, the stabilization of IM1 is dominant channel.  相似文献   

3.
Three methods of obtaining time-resolved Fourier-Transform infrared (TR-FTIR) absorption spectra of transition metal carbonyl radicals in hexane are reported here. For the first method, CpM(CO)2L and Cp*M(CO)2L (M = Mo, W; L = CO, PR3) radicals have been generated by photodissociation of the corresponding metal-metal bonded dimers. Radicals of formula M(CO)4L (M = Mn, Re; L = CO, PR3, AsPh3, SbPh3) and CpM(CO)n (M = Fe, Mo; n = 2, 3) have been produced via the second method which is halogen abstraction of the transition metal carbonyl halides using CpMo(CO)3 radical. For the third method, fast radical ligand substitution kinetics has been exploited to generate CpMo(CO)2PR3 radicals from CpMo(CO)3 in the presence of free phosphines. An assessment of the three methods with respect to TR-FTIR spectroscopic detection of radicals was also discussed.  相似文献   

4.
The reaction of alkynylzinc bromides with benzyl bromides or chlorides in the presence of a catalytic amount of Pd(DPEphos)Cl2 in THF at 23 °C cleanly produces the corresponding benzylated alkynes in 73-97% yields. With 10−3 mol % of Pd(DPEphos)Cl2, the maximum turnover number of 7.1 × 104 has been observed for the formation of PhCCCH2Ph.  相似文献   

5.
The triple ligand transfer reaction between planar-chiral cyclopentadienyl-ruthenium complexes [Cp′Ru(NCMe)3][PF6] (1) (Cp′ = 1-(COOR2)-2-Me-4-R1C5H2; R1 = Me, Ph, t-Bu) and iron complexes CpFe(CO)(L)X (2) (L = PMe3, PMe2Ph, PMePh2, PPh3; X = I, Br) resulted in the formation of metal-centered chiral ruthenium complexes Cp′Ru(CO)(L)X (3) in moderate yields with diastereoselectivities of up to 68% de. The configurations of some major diastereomers were determined to be by X-ray crystallography. The diastereoselectivity of 3 was under kinetic control and not affected by the steric effect of the substituents on the Cp′ ring of 1 and the phosphine of 2. Although the double ligand transfer reaction between [Cp′Ru{P(OMe)3}(NCMe)2][PF6] (7) and CpFe(CO)2X (8) produced Cp′Ru{P(OMe)3}(CO)X (9), the selectivity at the ruthenium center was low.  相似文献   

6.
For the first time a complete set of tricarbonylhalidorhenium(I) complexes (Hal = F, Cl, Br, I) has been studied in a systematical fashion by example of (abpy)Re(CO)3(Hal), abpy = 2,2′-azobispyridine. Crystal structures of chloride, bromide and iodide analogues are now available, showing increasing planarization of the abpy ligand in that order. Cyclic voltammetry, EPR, IR and UV/Vis spectroelectrochemistry of the reduced forms [(abpy)Re(CO)3(Hal)] illustrate that the four halide complexes differ only partially in their properties. The strongest deviations are observed for [(abpy)Re(CO)3F] which is distinguished by the widest electrochemical potential range but most pronounced chemical lability. In the EPR spectrum the fluoride exhibits the highest isotropic g value (2.0085) and the lowest rhenium coupling constant, which is of the same magnitude (2 mT) as the detectable 19F hyperfine splitting.  相似文献   

7.
A simple and sensitive method for the determination of nanomolar levels of hydrogen peroxide (H2O2) in seawater has been developed and validated. This method is based on the reduction of H2O2 by ferrous iron in acid solution to yield hydroxyl radical (OH) which reacts with benzene to produce phenol. Phenol is separated from the reaction mixture by reversed phase high performance liquid chromatography and its fluorescence intensity signals were measured at excitation and emission of 270 and 298 nm, respectively. Under optimum conditions, the calibration curve exhibited linearity in the range of (0-50) × 103 nmol L−1 H2O2. The relative standard deviations for five replicate measurements of 500 and 50 nmol L−1 H2O2 are 1.9 and 2.4%, respectively. The detection limit for H2O2, defined as three times the standard deviation of the lowest standard solution (5 nmol L−1 H2O2) in seawater is 4 nmol L−1. Interference of nitrite ion (NO2) on the fluorescence intensity of phenol was also investigated. The result indicated that the addition of 10 μmol L−1 NO2 to seawater samples showed no significant interference, although, the addition of 50 μmol L−1 NO2 to the seawater samples decreases the fluorescence intensity signals of phenol by almost 40%. Intercomparison of this method with well-accepted (p-hydroxyphenyl) acetic acid (POHPAA)-FIA method shows excellent agreement. The proposed method has been applied on-board analysis of H2O2 in Seto Inland seawater samples.  相似文献   

8.
A variety of methods, conventional and non-conventional, are used in attempts to prepare the compounds (η6-corannulene)M(CO)3 (M = Cr, Mo, W), all unsuccessful. Conventional methods are also utilized in attempts to prepare the compound [CpFe(η6-corannulene)]PF6, but these result in mixtures of cationic CpFe(arene) complexes containing partially hydrogenated corannulene; similar results have been reported for other polyaromatic hydrocarbons. DFT calculations on the compound (η6-corannulene)Cr(CO)3 suggest that the (η6-corannulene)-Cr linkage is only a few kcal/mol weaker than the corresponding bond in (η6-benzene)Cr(CO)3, implying that failures in syntheses arise from kinetic, not thermodynamic problems.  相似文献   

9.
The reaction of Ni(xbsms) (H2xbsms = 1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) with [Ru(CO)3Cl2(thf)] yields green crystals of [NiCl(xbsms)Ru(CO)3Cl]. The structure of this structural model of the active site of NiFe hydrogenase reveals a pentacoordinated nickel(II) center with bound chloride anion. It therefore adopts a paramagnetic (S = 1) electronic configuration as shown by magnetic susceptibility measurements. In DMF, this compound is converted into a red ionic-salt [NiL(xbsms)Ru(CO)3Cl]Cl (L = water or DMF) that catalyzes hydrogen electro-evolution from Et3NHCl at −1.52 V vs. Ag/AgCl (−2.05 V vs. Fc0/+).  相似文献   

10.
Abstract

Kinetic studies illuminate details of the reaction of photoproduced CpFe(CO)(η3-CH2C6H5) with two electron Lewis bases. Rate constants of 151(10)M?1s?1 for CO back reaction and between 440 and 3200 M?1s?1 for reaction with various phosphine nucleophiles were recorded. Linear free energy analysis quantifies the stereoelectronic effect of the nucleophile. Variation of the para-substituent on the benzyl group demonstrates that an electron rich benzyl group impedes reaction. The effect of ancillary ligands was seen by substitution of C5Me5 for C5H5. The large, electron rich C5Me5 speeds up CO substitution but slows down PPh3 substitution. Mechanistic clues were obtained from Eyring plots for reaction of CpFe(CO)(η3-CH2C6H5) with 4 different phosphines. Examination of the measured enthalpy and entropy barriers suggests a stepwise reaction mechanism.  相似文献   

11.
This paper describes a highly sensitive, selective catalytic-kinetic-spectrophotometric method for the determination of copper(II) concentration as low as 6 ng ml−1. The method is based on the catalytic effect of copper(II) on the oxidation of citric acid by alkaline hexacyanoferrate(III). The reaction was followed by measuring the decrease in absorbance of hexacyanoferrate(III) at 420 nm (λmax of [Fe(CN)6]3−,  = 1020 dm3 mol−1 cm−1). The dependence of rate of the indicator reaction on the reaction variables has been studied and discussed to propose a suitable mechanism to get a relation between the reaction rate and [Cu2+]. A fixed time procedure has been used to obtain a linear calibration curve between the initial rate and lower [Cu2+] or log[Cu2+] in the range 1 × 10−7 to 4 × 10−4 mol l−1 (6.35-25,400 ng ml−1). The detection limit has been calculated to be 4 ng ml−1. The maximum average error is 3.5%. The effect of the presence of various cations, commonly associated with copper(II) and some anions has also been investigated and discussed. The proposed method is sensitive, accurate, rapid and inexpensive compared to other techniques available for determination of copper(II) in such a large range of concentration. The new method has been successfully applied for the determination of copper(II) in various samples.  相似文献   

12.
The reaction of [CpFe(dppe)Cl] (1) [dppe = 1,2-bis(diphenylphosphino)ethane] with one equivalent of P4 or P4S3 in the presence of a chloride scavenger, TlPF6 or AgOTf (OTf = triflate, OSO2CF3), affords the complexes [CpFe(dppe)(η1-P4)]PF6 (2) and [CpFe(dppe)(η1-Pbasal-P4S3)]OTf (3) which contain the tetrahedral P4 and the mixed P4S3 cage molecule η1-bound to the metal. Both P4 and P4S3 yield furthermore the dimetal compounds [{CpFe(dppe)}2(μ,η1:1-P4)](PF6)2 (4) and [{CpFe(dppe)}2(μ,η1:1-Papical-Pbasal-P4S3)](OTf)2 (5), which contain the tetrahedral P4 or the mixed-cage P4S3 molecule tethering two ruthenium fragments via two phosphorus atoms. All the compounds have been characterized by elemental analyses and NMR measurements. The crystal structure of 4 has been determined by X-ray diffraction methods. The complexes readily react with excess water under mild reaction conditions and the outcoming products have been identified.  相似文献   

13.
The germane intermediate σ-complexes, characterized by high-field resonances in the region from −6 to −8 ppm, have been detected during the 1H NMR spectroscopy monitoring of the photochemical reaction of Et3GeH with Mo(CO)6, [Mo(CO)44-cod)], and [Mo(CO)44-nbd)] in the NMR tube. The activation of the Ge-H bond of germane in photochemical reaction of the norbornadiene (nbd) complex [Mo(CO)44-nbd)] has been applied in the hydrogermylation of norbornadiene, which leads to the formation of triethylgermylnorbornene.  相似文献   

14.
The interaction of (Me3Si)3SiH with O2 is known to afford (Me3SiO)2Si(H)SiMe3 in which the two oxygen atoms arise from the same oxygen molecule. In order to investigate the mechanism of this unusual reaction, the oxidation rates were measured in the temperature range 30-70 °C by following oxygen uptake in the presence and absence of hydroquinone as inhibitor. The rate constant for the spontaneous reaction of (Me3Si)3SiH with O2 was determined at 70 °C to be ∼3.5 × 10−5 M−1 s−1. A sequence of the propagation steps is proposed by combining the previous and present experimental findings with some theoretical results obtained at the semiempirical level. These calculations showed that the silylperoxyl radical (Me3Si)3SiOO undergoes three consecutive unimolecular steps to give (Me3SiO)2Si()SiMe3. Evidence has been obtained that the rate determining step is the rearrangement of silylperoxyl radical to a dioxirand-like pentacoordinated silyl radical. Our findings are of considerable importance for the understanding of the oxidation of hydrogen-terminated silicon surfaces.  相似文献   

15.
The kinetics of oxidative addition of CH3I to [Rh(FcCOCHCOCF3)(CO)(PPh3)], where Fc = ferrocenyl and (FcCOCHCOCF3) = fctfa = ferrocenoylacetonato, have been studied utilizing UV/Vis, IR, 1H and 31P NMR techniques. Three definite sets of reactions involving isomers of at least two distinctly different classes of RhIII-alkyl and two different classes of RhIII-acyl species were observed. Rate constants for this reaction in CHCl3 at 25 °C, applicable to the reaction sequence below, were determined as k1 = 0.00611(1) dm3 mol−1 s−1, k−1 = 0.0005(1) s−1, k3 = 0.00017(2) s−1 and k4 = 0.0000044(1) s−1 while k−3 ? k3 and k−4 ? k4 but both ≠0. The indeterminable equilibrium K2 was fast enough to be maintained during RhI depletion in the first set of reactions and during the RhIIIalkyl2 formation in the second set of reactions. From a 1H and 31P NMR study in CDCl3, Kc1 was found to be 0.68, Kc2 = 2.57, Kc3 = 1.00, Kc4 = 4.56 and Kc5 = 1.65.  相似文献   

16.
The labile complex W(CO)52-btmse) undergoes replacement of bis(trimethylsilyl)ethyne, btmse, by triphenylbismuthine in cyclohexane solution at an observable rate in the temperature range of 35-50 °C yielding almost solely W(CO)5(BiPh3) as the final product. The kinetics of this substitution reaction was studied in cyclohexane solution by quantitative FT-IR spectroscopy. The substitution reaction obeys a pseudo-first-order kinetics with respect to the concentration of the starting complex. The observed rate constant, kobs, was determined at four different temperatures and three different concentrations of the entering ligand BiPh3 in the range 16.8-65.4 mM. From the evaluation of kinetic data a possible reaction mechanism was proposed in which the rate determining step is the cleavage of metal-alkyne bond in the complex W(CO)52-btmse). A rate law was derived from the proposed mechanism. From the dependence of kobs on the entering ligand concentration, the rate constant k1 for the rate determining step was estimated at all temperatures. The activation enthalpy (106 ± 2 kJ mol−1) and the activation entropy (111 ± 6 J K−1 mol−1) were determined for this rate determining step from the evaluation of k1 values at different temperatures. The large positive value of the activation entropy is consistent with the dissociative nature of reaction. The large value of the activation enthalpy, close to the calculated tungsten-alkyne bond dissociation energy, also supports this dissociative rate-determining step of the substitution reaction.  相似文献   

17.
The reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip, or mor) and dehydroacetic acid thiosemicarbazone (abbreviated as H2dhatsc where H2 stands for the two dissociable protons) in benzene under reflux afford a series of new ruthenium(II) carbonyl complexes containing dehydroacetic acid thiosemicarbazone of general formula [Ru(dhatsc)(CO)(B)(EPh3)] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip or mor; dhatsc = dibasic tridentate dehydroacetic acid thiosemicarbazone). All the complexes have been characterized by elemental analyses, FT-IR, UV-Vis, and 1H NMR spectral methods. The thiosemicarbazone of dehydroacetic acid behaves as dianionic tridentate O, N, S donor and coordinates to ruthenium via phenolic oxygen of dehydroacetic acid, the imine nitrogen of thiosemicarbazone and thiol sulfur. In chloroform solution, all the complexes exhibit metal-to-ligand charge transfer transitions (MLCT). The crystal structure of one of the complexes [Ru(dhatsc)(CO)(PPh3)2] (1) has been determined by single crystal X-ray diffraction which reveals the presence of a distorted octahedral geometry in the complexes. All the complexes exhibit an irreversible oxidation (RuIII/RuII) in the range 0.76-0.89 V and an irreversible reduction (RuII/RuI) in the range −0.87 to −0.97 V. Further, the free ligand and its ruthenium complexes have been screened for their antibacterial and antifungal activities. The complexes show better activity in inhibiting the growth of bacteria Staphylococcus aureus and Escherichia coli and fungus Candida albicans and Aspergillus niger. These results made it desirable to delineate a comparison between free ligand and its ruthenium complexes.  相似文献   

18.
Fan J  Guo H  Liu G  Peng P 《Analytica chimica acta》2007,585(1):134-138
Peroxyl radical produced by Fenton-like reagent (Fe(III) + H2O2) oxidizes Rhodamine 6G and produces the quenching of its fluorescence. It is also found that bisphenol A has an inhibitory effect on the redox reaction. Based on this observation, an inhibitory kinetic fluorimetric method is reported for the determination of trace bisphenol A. The fluorescent inhibition of rhodamine 6G is measured by fix-time method. Under the optimum experimental conditions, the detection limit and the quantification limit for bisphenol A is 2.0 and 6.7 ng mL−1, respectively; and the linear range of the determination is 0.024-0.4 μg mL−1. The proposed method has been used for the determination of bisphenol A in environmental waters, river bottom sediment, generic soil, polycarbonate products and teeth filling samples with recoveries of 92.5-110.0%. The possible mechanism of the reaction has also been discussed.  相似文献   

19.
The mechanism of chloride substitution in CF2CFCl with [Re(CO)5] and [CpFe(CO)2] anions is investigated experimentally and theoretically. The substitution reaction begins with the nucleophile addition to CF2CFCl producing the carbenoid anion [MCF2CFCl] (A) (M = Re(CO)5, CpFe(CO)2). This is shown by trapping the intermediate A with electrophiles - proton donor (t-BuOH) to give MCF2CFClH or with CF2CFRe(CO)5 to give acylmetallate III, and by the formation of the substitution products CF2CFM from the anion A, generated by the deprotonation of MCF2CFClH with t-BuOK. 1,2-Shift of metal carbonyl group concerted with the α-elimination of chloride anion is proposed as the transformation pathway of carbenoid A into CF2CFM. A competing process of carbene insertion into Fe-CO bond is proposed to explain the formation of (XI). The feasibility of these two pathways is confirmed by DFT (B3LYP/SDD and 6-31G) calculations of the carbenes [MCF2CF:] and carbenoid anions [MCF2CFCl]. Transition states (TS) for 1,2-shift (+3.2 kcal/mol) and for nucleophilic addition at CO ligand (+5.4 kcal/mol) are located for [(CO)5ReCF2CFCl], but only one TS corresponding to carbene insertion into Fe-CO bond (+2.1 kcal/mol) is located for [(CO)2CpFeCF2CFCl]. The formation of other newly observed products, F(CO)CHFRe(CO)5 (V) and Cp(CO)2FeCCFeCp(CO)2 (VIII) is also discussed.  相似文献   

20.
The activation of the Ge-H bond and the formation of several hydride complexes, characterized by high-field resonances, have been detected during the 1H NMR spectroscopy monitoring of the photochemical reaction of Et3GeH and Et2GeH2 with W(CO)6 and the norbornadiene complex [W(CO)4(η4-nbd)]. The activation of the Ge-H bond of triethylgermane in the photochemical reactions of tungsten(0) complexes has been applied in the hydrogermylation of norbornadiene (nbd), which leads to the formation of endo-triethylgermylnorbornene as the major product. The complex [{W(μ-η2-H-GeEt2)(CO)4}2] has been fully characterized by NMR spectroscopy and by a single-crystal X-ray diffraction study. Evidence for the hydride ligand of the W(μ-η2-H-GeEt2) group has been provided by 1H NMR spectroscopy (δ = −9.02, 1JH-W = 31 Hz) and by DFT calculations. A DFT study of the structural properties and 1H NMR chemical shifts of several possible intermediate σ and hydride complexes formed during the photochemical reaction of W(CO)6 and Et2GeH2 has been performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号