首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The syntheses of the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5) (M = Rh(III), Ir(III); aeaz = C2H4NC2H4NH2, az = C2H4NH (3)) containing cationic N-(2-aminoethyl)aziridine-N,N′ chelate complexes are described. The bis-aziridine complexes [MCl(Cp)(az)2]Cl (M = Rh (1), M = Ir (2)) react with an excess of the aziridine (az) in the presence of AgO3SCF3 (=AgOTf) via AgCl precipitation and az addition followed by a metal-mediated coupling reaction, to give the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5). The new aeaz ligand is formally the dimerisation product of az. Using the same reaction conditions with the analogous, but weaker Lewis acidic ruthenium(II) complex [RuCl(C6Me6)(az)2]Cl (6) an anion exchange reaction yielding [RuCl(C6Me6)(az)2]OTf (8) is observed. After purification, all compounds are fully characterized using IR, FAB-MS, 1H and 13C NMR spectroscopy. The single crystal X-ray structure analysis reveals a distorted octahedral geometry for all complexes.  相似文献   

2.
Treatment of [Cp′MH(CO)3] (M = Mo, W; Cp′ = η5-C5H5 (Cp), η5-C5Me5 (Cp*)) with 1/8 equiv of S8 in THF, followed by the reaction with dppe under UV irradiation, gave new mono(hydrosulfido) complexes [Cp′M(SH)(CO)(dppe)] (Cp′ = Cp: M = Mo (5), W (6); Cp′ = Cp*: M = Mo (7), W (8); dppe = Ph2PCH2CH2PPh2). When 5 and 6 dissolved in THF were allowed to react with [RhCl(PPh3)3] in the presence of base, heterodinuclear complexes with bridging S and dppe ligands [CpM(CO)(μ-S)(μ-dppe)Rh(PPh3)] (M = Mo (9), W(10)) were obtained. Semi-bridging feature of the CO ligands were also demonstrated. Upon standing in CH2Cl2 solutions, 9 and 10 were converted further to the dimerization products [(CpM)2{Rh(dppe)}22-CO)23-S)2] (M = Mo (13), W). Detailed structures of mononuclear 7 and 8, dinuclear 9 and tetranuclear 13 have been determined by the X-ray diffraction.  相似文献   

3.
Reactions of R2P-P(SiMe3)Li with [Cp2MCl2] (M = Zr, Hf) in hydrocarbons yield the related terminal phosphanylphosphido complexes [Cp2M(Cl){(Me3Si)P-PR2P1}] (R = iPr and tBu). The solid state structures of [Cp2M(Cl){P(SiMe3)-PiPr2P1}] (M = Zr, Hf) were established by single crystal X-ray diffraction studies. The phosphido-P atoms adopt almost planar geometries and the phosphanyl P atoms adopt pyramidal geometries. The reaction of a mixture of (Me3Si)2PLi and Ph2P-P(SiMe3)Li with [CpZrCl3] in toluene yields the dinuclear complex [Cp2Zr2Cl5(Ph2PPPSiMe3)(Li THF DME)].  相似文献   

4.
A comparative investigation on three novel bis(cyclopentadienyl) mono(β-diketonato) titanium(IV) complexes, [Cp2TiIV(R1COCHCOR2)]+ClO4 (Cp = η5-C5H5), i.e. [Cp2Ti(tfba)]+, [Cp2Ti(tfth)]+ and [Cp2Ti(tfba)]+ where tfba = CF3COCHCOC6H5, tfth = CF3COCHCOC4H3S and tffu = CF3COCHCOC4H3O, has been performed based on structural data and DFT calculations. The preparation of [Cp2TiIV(β-diketonato)]+ClO4 involves the reaction of Cp2TiCl2 with AgClO4 and the respective β-diketones. The crystal structures show that the structures are isomorphous. All the complexes exhibit π-stacking between one Cp ring and the aromatic R-group ring, i.e. the C6H5, C4H3S and C4H3O fragments, respectively. The DFT calculations show that the formal 16-electron count of these d0 titanium(IV) complexes is increased via Ti ← O π bonding. The bonding mode in the [Cp2Ti(β-diketonato)]+ complexes is different from that in Cp2Ti(OR)2 and Cp2Ti(dioxolene) complexes.  相似文献   

5.
Reaction of Ph3PCHCOC6H4Me (L), with HgX2 and CdCl2·H2O in methanol with equimolar ratios give binuclear complexes of the type [MX(μ-X){CH(PPh3)C(O)C6H4Me}]2 (M = Hg; X = Cl (1), Br (2), I (3), M = Cd; Cl(4)). The bridge-splitting reaction of binuclear complexes [MX(μ-X){CH(PPh3)C(O)C6H4Me}]2 by dimethyl sulfoxide (DMSO) yields the mononuclear complexes [MX2{CH(PPh3)C(O)C6H4Me}(OSMe2)] (M = Hg; X = Cl (5), Br (6), I (7), M = Cd; Cl (8)). The characterization of these complexes was carried out by elemental analysis and FT-IR, 1H, 31P, and 13C NMR spectroscopies. C-coordination of ylide and O-coordination of DMSO are demonstrated by single-crystal X-ray analysis of mononuclear complex of [HgBr2{CH(PPh3)C(O)C6H4Me}(OSMe2)] (6). Complex 6 is monomeric with tetrahedral geometry around the metal ion.  相似文献   

6.
Reactions of [M(Cp)Cl(μ-Cl)]2 (M = Ir(1a); M = Rh(1b)) with tridentate ligands tpt (tpt = 2,4,6-tripyridyl-1,3,5-triazine) gave the corresponding trinuclear complexes [M3(Cp)33-4-tpt-κN)Cl6] (M = Ir(2a); M = Rh(2b)), which can be converted into hexanuclear complexes [M6(Cp)63-4-tpt-κN)2(μ-Cl)6](O3SCF3)6 (M = Ir(3a); M = Rh(3b)) by treatment with AgO3SCF3, respectively. X-ray of 3b revealed that each of six pentamethylcyclopentadienyl metal moieties was connected by two μ-Cl-bridged atoms and a tridentate ligand to construct a cation triangular metallo-prism cavity with the volume of about 273 Å3 based on the distance of the two triazine moieties is 3.62 Å.  相似文献   

7.
The soluble reagent indium(I) trifluoromethanesulfonate, InOTf, does not appear to react or interact with ferrocene (Cp2Fe, Cp = C5H5) whereas cobaltocene reacts with InOTf to produce [Cp2Co]+[OTf] and indium metal. Unexpectedly, the reaction of InOTf with manganocene results in the formation of the unprecedented salt [In(μ25-Cp)In]+[Cp3In(μ21-Cp)InCp3]: a form of “Cp2In” that is characterized by X-ray crystallography. Similarly, the reaction of InOTf with [Cp2Fe]+[PF6] produces Cp2Fe and “In4OTf6” in addition to other products. The unusual structural features and the formation of the new indium-containing products are rationalized.  相似文献   

8.
The binuclear half-sandwich iridium complexes {CpIrCl2}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (3) and {CpIr[E2C2(B10H10)]}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (E = S(5a), Se(5b)) were prepared from the reaction of [CpIrCl(μ-Cl)]2 or the “pseudo-aromatic” half-sandwich iridium complex CpIr[E2C2(B10H10)] (E = S(4a), Se(4b)) with a tetrathiafulvalene (TTF) derivative 2,6-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (2) at room temperature. The complexes (3, 5a and 5b) have been fully characterized by IR and NMR spectroscopy, as well as elemental analysis. And the molecular structures of 2 and 5a were established through X-ray crystallography. It is interesting that infinite tunnels are created by repeating ‘buckled bowl’ molecules of 5a.  相似文献   

9.
Four half-sandwich cobalt complexes, CpCo(2-PyS)2 (2), CpCo(2-PyS)2 · HI (3), CpCo(2-PyS) (4-PyS) (4), (CpCo)2(μ-PhS)2(μ-2-PyS)I (5) [Cp = pentamethylcyclopentadienyl, 2-PyS = 2-pyridinethiolate, 4-PyS = 4-pyridinethiolate, PhS = benzenethiolate] were successfully synthesized by the reactions of 2-pyridinethione, lithium 4-pyridinethiolate and lithium benzenethiolate with CpCo(2-PyS)I (1), respectively. Complexes 2 and 3 have the structures with two 2-pyridinethiolates ligands coordinated to the cobalt atom. Two different pyridinethiolates ligands can be identified in complex 4. The molecular structure of 5 consists of two Cp-Co fragments, which are triply bridged by three sulfur atoms from different ligands. The molecular structures of 3 and 5 were determined by X-ray crystallographic analysis. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

10.
The reaction mechanisms of group 6 transition metal dihydride complexes, Cp2MH2 (M = Cr, Mo, and W), and HBF4 were studied using M06‐L density functional theory. The chemical bond changes along the reaction pathway are analyzed by the topological analysis of electron density. The calculated results show that the interactions between the H atom of HBF4 and Cp2MH2 are stronger than those between Cp2MH2 and BF3; additionally, due to the low energy barriers in the subsequent reaction, all the title reactions can occur easily, and the yield rates of the Cp2MH2 + HBF4 reactions are high. For M = Cr and Mo, the [Cp2MH3]+ in the product Cp2MH3·BF4 is in the nonclassic dihydrogen‐hydride form ([Cp2M(η2‐H2)H]+). [Cp2CrH3]+ and [Cp2MoH3]+are unstable, and H2 can be easily liberated from them. For M = W, the final product is Cp2WH3·BF4, and [Cp2WH3]+ is stable in the classic trihydride form.  相似文献   

11.
A series of titanocene(III) alkoxides L2Ti(III)OR where L = Cp, R = Et(1b), tBu(1a), 2,6-Me2C6H3(1c), 2,6-tBu2-4-Me-C6H2(1d), or L = Cp*, R = Me(2e), tBu(2a), Ph(2f) was synthesized and subjected to reaction with [CpM(CO)3]2 [M = Mo, W], [CpRu(CO)2]2, and Co2(CO)8. The Ti(III) precursors 1a, 1c, 2a, 2e, and 2f reacted with [CpM(CO)3]2 [M = Mo, W] to form heterobimetallic complexes L2Ti(OR)(μ-OC)(CO)2MCp [M = Mo, W], of which Ti and M are linked by an isocarbonyl bridge. Reactions of these Ti(III) complexes with Co2(CO)8 resulted in formation of Ti-Co1 heterobimetallic complexes, from 2a, 2e, or 2f, or Ti-Co3 tetrametallic complexes, Cp2Ti(OtBu)(μ-OC)Co3(CO)9 from 1a, 1b, or 1c. The products were characterized by NMR, IR, and X-ray crystallography. Reaction mechanisms were proposed from these results, in particular, from steric/electronic effects of titanium alkoxides.  相似文献   

12.
The reaction of M(η6-1,3,5-Me3C6H3)2, M = Cr, Mo, with the tetrahalides of Groups 4 and 5 elements proceeds with the monoelectronic oxidation of the metal bis-arene to the [M(η6-Me3C6H3)2]+ cation. In the case of MX4, M = Ti, X = Cl, Br, M = V, X = Cl, and of Nb2Cl10 the reduction products are the titanium(III), vanadium(III) halides and the niobium(IV) chloride, isolated as the solvate anions [MCl4(THF)2] and [NbCl4(CH3CN)]. The reaction of the tetrachloro complexes MCl4(THF)2, M = Zr, Hf, with Cr(η6-1,3,5-Me3C6H3)2 in THF produces the ionic [Cr(η6-1,3,5-Me3C6H3)2][MCl5(THF)], which has been characterized by single-crystal X-ray diffraction in the case of hafnium.  相似文献   

13.
Reaction of 3,4-dimethylphospholylthallium (Tl-1) with [CpMCl2]2 (M = Rh, Ir) leads to the formation of the dimeric species [(CpM)2(Me2C4H2P)3]+2 and 3 with bridging μ-η11-phospholyl ligands. The phosphametallocenium sandwich complexes [CpM(Me2C4(SiMe3)2P)]+7 (M = Rh) and 8 (M = Ir) could be obtained from the reaction of [CpMCl2]2 and the 2,5-bis(trimethylsilyl)-1-trimethylstannylphosphole 6, with the bulky trimethylsilyl groups preventing the phosphole from η1- and enforcing a η5-coordination. The structures of phospharhodocenium cation 7 and a byproduct 9 containing a phosphairidocenium moiety could be determined by X-ray diffraction.  相似文献   

14.
Reactions of 2-(diphenylphosphinomethyl)aniline, H2L1, with [MNCl2(PPh3)2] complexes (M = Re, Tc) give the bis-chelates [MNCl(H2L1)2]Cl (M = Re, Tc) or the mono-chelate [ReNCl2(PPh3)(H2L1)] depending on the conditions applied. The aminophosphine reacts as a bidentate, neutral ligand in all three cases. The complexes were studied spectroscopically and by X-ray crystallography.  相似文献   

15.
Treatment of the osmium(II) hydrides CpOs(P-P)H (Cp = pentamethylcyclopentadienyl) with methyl trifluoromethanesulfonate (MeOTf) affords osmium(II) triflate complexes with the general formula CpOs(P-P)(OTf), where P-P = bis(dimethylphosphino)methane (dmpm), bis(diphenylphosphino)methane (dppm), or 1,2-bis(dimethylphosphino)ethane (dmpe). The aqua complexes [CpOs(dmpm)(OH2)][OTf] and [CpOs(dppm)(OH2)][OTf] are synthesized by the addition of water to the corresponding anhydrous triflates. The complexes CpOs(dppm)(OTf) and [CpOs(dmpm)(OH2)][OTf] have been examined crystallographically, and all compounds have been characterized by NMR spectroscopy.  相似文献   

16.
The reactivity pattern of the 16-electron species [M(Cp)2Cl2] (M = Zr, Hf; Cp− = η5-C5H5) and [Ti(MeCp)2Cl2] (MeCp− = η5-C5H4CH3) towards the dipicolinate(−2) (dipic2−) ligand under mild (ambient temperature) and convenient (aerobic reactions, aqueous media) conditions have been investigated. The syntheses, molecular structures and spectroscopic (IR, 1H NMR) characterization are reported for the 18-electron products [Zr(Cp)2(dipic)] (1), [Hf(Cp)2(dipic)] (2) and [Ti(MeCp)2(dipic)] (3). The dipic2− ion behaves as N,O,O′-chelating ligand in the three complexes, while the centroids of the Cp (1, 2) and MeCp (3) rings formally occupy the fourth and fifth coordination sites about the central metal. The two identical/very similar bite angles of only ∼70° make the dipic2− ligand particularly suited to form stable metallocene derivatives with 5-coordinate geometry. IR and 1H NMR data are discussed in terms of the known structures and the tridentate chelating mode of the dipic2− ligand.  相似文献   

17.
The generation and properties of the Cp2Zr{CH(SiMe3)2}+ cation are described. An X-ray crystallographic analysis shows that the carborane salt [Cp2Zr{CH(SiMe3)2}][HCB11Me5Br6] contains an agostic Zr-μ-Me-Si interaction in the solid state. Low temperature NMR spectra of the borate salt [Cp2Zr{CH(SiMe3)2}][B(C6F5)4] show that this interaction is retained in solution. Variable temperature NMR spectra establish that the SiMe2(μ-Me) and unbound SiMe3 units of Cp2Zr{CH(SiMe3)2}+ exchange by a “pivot” process involving partial rotation around the Zr-CH(SiMe3)2 bond, with a barrier of ΔG = 9.2(1) kcal/mol at −89 °C. Cp2Zr{CH(SiMe3)2}+ does not coordinate alkenes or alkynes.  相似文献   

18.
Reactions of a sulfido- and thiolato-bridged diiridium complex [(CpIr)2(μ-S)(μ-SCH2CH2CN)2] (Cp = η5-C5Me5) with [(CpMCl)2(μ-Cl)2] (M = Ir, Rh) afforded the sulfido- and thiolato-bridged trinuclear clusters [(CpM)(CpIr)23-S)(μ2-SCH2CH2CN)22-Cl)]Cl (4: M = Ir, 5: M = Rh). Upon treatment with XyNC (Xy = 2,6-Me2C6H3) in the presence of KPF6 at 60 °C, 4 was converted into a mixture of a mononuclear XyNC complex [CpIr(SCH2CH2CN)(CNXy)2][PF6] (6) and a dinuclear XyNC complex [{CpIr(CNXy)}2(μ-S)(μ-SCH2CH2CN)][PF6] (7). On the other hand, reactions of 4 and 5 with methyl propiolate in the presence of KPF6 at 60 °C resulted in the formation of a cyclic trimer of the alkyne 1,3,5-C6H3(COOMe)3 as the sole detectable organic product. The reactions proceeded catalytically with retention of the cluster cores of 4 and 5, whereby the activity of the former was much higher than that of the latter.  相似文献   

19.
The tetradendate macrocyclic ligands, [H2L-1 = 5,12-dioxa-7,14-dimethyl-1,4,8,11-tetraazacyclotetradeca-1,8-diene] and [H2L-2 = 6,14-dioxa-8,16-dimethyl-1,5,9,13-tetraazacyclohexadeca-1,9-diene] have been prepared by the condensation reaction of 1,2-diaminoethane and 1,3-diaminopropane, respectively, with ethyl acetoacetate in methanol at room temperature. The diorganotin(IV) complexes of general formula [R2Sn(L-1)/R2Sn(L-2)] (R = Me, n-Bu and Ph) have been synthesized by template condensation reaction of 1,2-diaminoethane or 1,3-diaminopropane and ethyl acetoacetate with R2SnCl2 (R = Me or Ph) or n-Bu2SnO in 2:2:1 molar ratio at ambient temperature (35 ± 2 °C) in methanol. The solid-state characterization of resulting complexes have been carried out by elemental analysis, IR, recently developed DART-mass, solid-state 13C NMR, 119mSn Mössbauer spectroscopic studies. These studies suggest that in all of the studied complexes, the macrocyclic ligands act as tetradentate coordinating through four nitrogen atoms giving a skew-trapezoidal bipyramidal environment around tin center. Since, the studied diorganotin(IV) macrocyclic complexes are insoluble in common organic solvents, hence good crystals could not be grown for single crystal X-ray crystallographic studies. Thermal studies of all of the studied complexes have also been carried out in the temperature range 0-1000 °C using TG, DTG and DTA techniques. The end product of pyrolysis is SnO2 confirmed by XRD analysis.  相似文献   

20.
Tungsten(VI) and molybdenum(VI) complexes [MO(L1)Cl2] and [M(X)(L2)Cl3] (X = O, NPh) with tridentate aminobis(phenolate) ligand L1 = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) and bidentate aminophenolate ligand L2 = 2,4-di-tert-butyl-6-((dimethylamino)methyl)phenolate) were prepared and characterised. These complexes are principally stable in open atmosphere under ambient conditions. When activated with Et2AlCl, they exhibited high activity in ring-opening metathesis polymerisation (ROMP) of 2-norbornene (NBE) and its derivatives. Especially complexes [M(NPh)(L2)Cl3], which are easily available from corresponding metal oxides MO3 by a simple three-step synthesis, were found very efficient ROMP catalysts for NBE (M = Mo, W) and 2-norbornen-5-yl acetate (M = Mo).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号