首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A SOI-based optoelectronic device needs a high-quality anti-reflection coating on both faces of the device to minimize the optical reflectance from the face. In this work amorphous silicon oxynitride films were deposited on silicon substrates by ion beam assisted deposition (IBAD). The main purpose was to use silicon oxynitride film as single layer anti-reflection coating for SOI-based optoelectronic devices. This application is primarily based on the ability to tune the silicon oxynitride optical functions to the values optimal by changing deposition parameters. The chemical information was measured by X-ray photoelectron spectroscopy (XPS). Spectroscopic ellipsometry (SE) was applied to measure the refractive index and thickness. Single-side polished silicon substrate that was coated with silicon oxynitride film exhibited low reflectance. Double-side polished silicon substrate that was coated with silicon oxynitride film exhibited high transmittance. The results suggested silicon oxynitride film was a very attractive single layer anti-reflection coating for SOI-based optoelectronic device.  相似文献   

2.
Abstract

A polyorganosiloxane thin film was deposited on an optically transparent poly(ethylene 2,6-naphthalate) (PEN) film using plasma-enhanced chemical vapor deposition (PECVD) at room temperature to improve the moisture barrier property of the PEN film. In the PECVD process, hexamethyldisiloxane (HMDSO) was used as the monomer. Argon or oxygen and their mixture gases were used as the plasma carrier gas. Poly(HMDSO) thin film was successfully deposited through plasma-induced radical polymerization reaction on the surface of PEN film. It was observed that the mixture ratio of argon-oxygen carrier gas significantly affected the surface and the moisture barrier properties of the resulting poly(HMDSO) film. Chemical structures of the poly(HMDSO) were confirmed using FT-IR analysis. Surface properties of the poly(HMDSO) thin film were investigated by water contact angle measurement and atomic force microscopy (AFM). Water vapor transmission rate (WVTR) value was obtained by an electrical calcium test (Ca test) at 85?°C and 85% relative humidity condition. It was confirmed that the poly(HMDSO) thin film exhibited excellent water vapor barrier capability. WVTR value of the PEN film coated with poly(HMDSO) deposited with a mixture of argon and oxygen (Ar: O2 = 2: 8) was 5.09?g/m2-day, which is much lower than 18.4?g/m2-day of a bare PEN film.  相似文献   

3.
The crystal growth of 3C-SiC onto silicon substrate by Vapor–Liquid–Solid (VLS) transport, where a SiGe liquid phase is fed with propane, has been investigated. Three sample configurations were used. In a preliminary approach, the VLS growth of SiC was conducted directly onto Si substrate using a Ge film as liquid catalyst. It led to the growth of a thick continuous SiC polycrystalline layer which was floating over a SiGe alloy located between the silicon substrate and the topping SiC layer. In the second configuration, a thin seeding layer of 3C-SiC grown by chemical vapor deposition (CVD) was used and the VLS growth was localized using a SiO2 mask. The liquid phase was a CVD deposited SiGe alloy. The growth of a few hundred nanometers thick 3C-SiC epitaxial layer was demonstrated but the process was apparently affected by the presence of the oxide which was dramatically etched at the end. In the last configuration, the silicon substrate was patterned down to 10 μm and a thin seeding layer of 3C-SiC was grown by CVD onto this patterned substrate. The liquid phase was again a CVD deposited SiGe alloy. In this last configuration, the presence of epitaxial SiC was evidenced but it grew as trapezoidal islands instead of an uniform layer.  相似文献   

4.
桂全宏  佘星欣 《人工晶体学报》2012,41(3):599-604,610
采用等离子体增强化学气相沉积(PECVD)法分别在玻璃衬底和p型薄膜硅衬底上制备了微晶硅薄膜。使用拉曼谱仪、紫外-可见分光光度计、傅里叶红外光谱仪等对微晶硅薄膜进行检测,重点研究了硅烷浓度、衬底温度对薄膜沉积速率和晶化率的影响。实验结果表明:两种衬底上薄膜的沉积速率均随硅烷浓度的增大、衬底温度的升高而变大。硅烷浓度对两种衬底的薄膜晶化率影响规律相同,即均随其升高而降低;但两种衬底的衬底温度影响规律存在差别:对玻璃衬底而言,温度升高,样品晶化率减小;而p型薄膜硅衬底则在温度升高时,样品晶化率先增大后减小。此外还发现,晶化率与薄膜光学性能及含氧量存在较密切关联。  相似文献   

5.
本文采用VHF-PECVD技术制备了不同结构的硅薄膜,分析研究了有、无纯化器对制备薄膜特性的影响.电学特性和结构特性测试结果表明:在10W的功率条件下,使用纯化器时制备的薄膜是光敏性满足非晶硅电池要求的材料,而在不使用纯化器时制备的材料是适用于太阳能电池有源层的纳米硅材料;在30W时,不使用纯化器制备薄膜的晶化明显增大,光敏性也相应的降低,50W的条件表现出相类似的结果,初步分析是氧引起的差别;激活能的测试结果也表明,使用纯化器会降低材料中的氧含量,即表现激活能相对大;另外,沉积速率的测试结果也给出:耗尽区所在位置与是否使用纯化器有很大关系.  相似文献   

6.
衬底温度是磁控溅射法制备氧化锌薄膜中一个非常重要的工艺指标,探索衬底温度对氧化锌薄膜微结构及光学性能的影响对制备环保型高质量氧化锌紫外屏蔽材料具有重要意义。以质量分数99.99%的氧化锌陶瓷靶为溅射源,利用射频磁控溅射技术在石英衬底上沉积了氧化锌紫外屏蔽薄膜,通过X射线衍射仪、薄膜测厚仪、紫外-可见分光光度计、荧光分光光度计进行测试和表征,研究了不同衬底温度对ZnO薄膜微结构及光学性能的影响。实验结果表明:制备所得薄膜均为六角纤锌矿结构,具有沿(002)晶面择优取向生长的特点,其晶格常数、晶粒尺寸、透过率、光学能隙、可见荧光、结晶质量等都与衬底温度密切相关,当衬底温度为250 ℃,溅射功率160 W,氩气压强0.5 Pa,氩气流速8.3 mL/min,沉积时间60 min时,所得氧化锌薄膜样品取向性最好,晶粒尺寸最大,薄膜结构致密,具有良好的光学性能和结晶质量。  相似文献   

7.
本工作采用甚高频等离子体化学气相沉积(VHF-PECVD)技术制备了P型微晶硅氧窗口层薄膜,讨论了P型微晶硅氧的光电特性随硼烷掺杂率的变化.采用紫外-可见透射光谱,拉曼光谱,傅立叶变换红外吸收光谱(FTIR),暗电导测量对薄膜的光电特性进行了表征.结果表明,P型微晶硅氧材料均表现为微晶态,随着硼烷掺杂率增加,晶化程度逐步降低,暗电导率快速减小,光学带隙持续降低.该结果可归因于硼烷掺杂的增加抑制晶化使得非晶成分增多,有效掺杂率降低导致薄膜电导率下降,另一方面,对硅氧物相分离的阻碍作用导致薄膜带隙下降.硼烷掺杂率为0.4;样品的电导率高达0.158 S/cm且光学带隙为2.2 eV,兼具高透射性和良好电导率,可作为高效硅基太阳电池的窗口层.  相似文献   

8.
This study deals with the role of the different substrates on the microstructural, optical and electronical properties of TiO2 thin films produced by conventional direct current (DC) magnetron sputtering in a mixture of pure argon and oxygen using a Ti metal target with the aid of X–ray diffractometer (XRD), ultra violet spectrometer (UV–vis) and atomic force microscopy (AFM) measurements. Transparent TiO2 thin films are deposited on Soda lime glass, MgO(100), quartz and sitall substrates. Phase purity, surface morphology, optical and photocatalytic properties of the films are compared with each other. It is found that the amplitude of interference oscillation of the films is in a range of 77‐89%. The transmittance of the film deposited on Soda lime glass is the smallest while the film produced on MgO(100) substrate obtains the maximum transmittance value. The refractive index and optical band gap of the TiO2 thin films are also inferred from the transmittance spectra. The results show that the film deposited on Soda lime glass has the better optical property while the film produced on MgO(100) substrate exhibits much better photoactivity than the other films because of the large optical energy band gap. As for the XRD results, the film prepared on MgO(100) substrate contains the anatase phase only; on the other hand, the other films contain both anatase and rutile phases. Furthermore, AFM images show that the regular structures are observed on the surface of all the films studied. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.  相似文献   

10.
Ultrasmooth thin silver films have been formed on a quartz substrate with a buffer yttrium oxide layer by pulsed laser deposition. The dependence of the surface morphology of the film on the gas (N2) pressure in the working chamber and laser pulse energy is investigated. It is found that the conditions of film growth are optimal at a gas pressure of 10?2 Torr and lowest pulse energy. The silver films formed under these conditions on a quartz substrate with an initial surface roughness of 0.3 nm had a surface roughness of 0.36 nm. These films can be used as a basis for various optoelectronics and nanoplasmonics elements.  相似文献   

11.
Hafnium oxide thin films were deposited on p-type (1 0 0) silicon wafers by reactive dc magnetron sputtering. Prior to the deposition of HfO2 films, a thin Hf film was deposited. Sputtered HfO2 thin films deposited at room temperature remain amorphous at T<650°C and orthorhombic phases were observed above 650 °C. The monoclinic phase which is a stable HfO2 polymorphic form appeared after annealing above 800 °C. Capacitance equivalent thickness values decreased and leakage characteristics are improved by the Hf interlayer and O2 settlement process. The decrease of accumulation capacitance values upon annealing is due to the growth of an interfacial layer upon post-annealing. The flat band voltage (VFB) shifts negatively due to positive charge generated during post-annealing.  相似文献   

12.
Epitaxial growth of ZnO thin films on Si substrates by PLD technique   总被引:1,自引:0,他引:1  
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films.  相似文献   

13.
以含一定比例Ga与As2O3的酸性溶液(pH=2.5)作为前驱溶液,以Pt片为对电极,饱和甘汞电极(SCE)为参比电极,室温下利用三电极电化学站在Ti衬底上恒压沉积GaAs薄膜.然后对GaAs薄膜进行退火处理.利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM),以及荧光光度计(PL)分别对不同沉积电压下所制备的薄膜的晶体结构,薄膜形貌以及光学性能进行分析表征.结果表明:沉积电压以及退火过程对GaAs薄膜的形貌、晶体结构、薄膜质量有很大影响,所制备的GaAs薄膜退火前晶化程度较低,部分粒子表现出不均匀团聚.光致发光峰为红光发射,且单色性好.退火后的GaAs薄膜为面心立方晶型,呈纳米颗粒状,薄膜的光电性能明显提高.  相似文献   

14.
Al2O3 and ZrO2 mixtures for gate dielectrics have been investigated as replacements for silicon dioxide aiming to reduce the gate leakage current and reliability in future CMOS devices. Al2O3 and ZrO2 films were deposited by atomic layer chemical vapor deposition (ALCVD) on HF dipped silicon wafers. The growth behavior has been characterized structurally and electrically. ALCVD growth of ZrO2 on a hydrogen terminated silicon surface yields films with deteriorated electrical properties due to the uncontrolled formation of interfacial oxide while decent interfaces are obtained in the case of Al2O3. Another concern with respect to reliability aspects is the relatively low crystallization temperature of amorphous high-k materials deposited by ALCVD. In order to maintain the amorphous structure at high temperatures needed for dopant activation in the source drain regions of CMOS devices, binary Al/Zr compounds and laminated stacks of thin Al2O3 and ZrO2 films were deposited. X-ray diffraction and transmission electron microscope analysis show that the crystallization temperature can be increased dramatically by using a mixed oxide approach. Electrical characterization shows orders of leakage current reduction at 1.1-1.7 nm of equivalent oxide thickness. The permittivity of the deposited films is determined by combining quantum mechanically corrected capacitance voltage measurements with structural analysis by transmission electron microscope, X-ray reflectivity, Rutherford backscattering, X-ray photoelectron spectroscopy, and inductively coupled plasma optical emission spectroscopy. The k-values are discussed with respect to formation of interfacial oxide and possible silicate formation.  相似文献   

15.
We report on the development and application of n-type hydrogenated microcrystalline silicon oxide (μc-SiOx:H) alloys in single and tandem junction thin film silicon solar cells. Single junction microcrystalline silicon (μc-Si:H) solar cells are prepared in n-i-p deposition sequence where n-type μc-SiOx:H films serve as window layers. In tandem solar cells, μc-SiOx:H layers are placed between amorphous (a-Si:H) and μc-Si:H component cells, serving as an intermediate reflector. The requirements for μc-SiOx:H layer depending on its application are discussed. Our results show that the optical, electrical and structural properties of μc-SiOx:H can be conveniently tuned over a wide range to fulfil various requirements for applications in both types of cells. Additionally, the properties of μc-SiOx:H layers appear to be substrate dependent, which should be taken into account when layers are utilized in cells. The advantages of low refractive index and high optical band gap allow to achieve high efficiencies of 9.2% and 12.6% for single junction and tandem solar cells, respectively.  相似文献   

16.
Zinc oxide (ZnO) film was deposited on a glass substrate by rf magnetron sputtering with O2/Ar as working gases. Structural properties of the films were characterized by XRD. Average crystallite size in the films was strongly dependent on both the gas flow ratio of O2/Ar and rf-power at a constant deposition pressure. During the deposition, energetic species in the plasma were in situ monitored using optical emission spectroscopy. An inverse correlation was observed between the average crystallite size and the emission intensity ratio of IO/IAr. Bombardment of atomic oxygen to the growing surface played an important role in determining the average crystallite size in the films. The average crystallite size could be controlled by the emission intensity ratio of IO/IAr.  相似文献   

17.
Synthesis of microcrystalline silicon (μc-Si) film at an ultrafast deposition rate over 100 nm/s is achieved from SiH4 + He by using a high density microwave plasma source even without employing H2 dilution and substrate heating techniques. Systematic deposition studies show that high SiH4 flow rate and working pressure increase film deposition rate while high He flow rate decreases the rate. On the other hand, crystallinity of deposited Si film decreases with increasing SiH4 or He flow rate and working pressure. Enhancements of gas phase and surface reactions during film deposition process are responsible for the achievement of high deposition rate and high film crystallinity.  相似文献   

18.
Hydrogenated amorphous silicon (a-Si:H) films show considerable potential for the fabrication of thin film solar cells. In this study, the a-Si:H thin films have been deposited in a parallel-plate radio frequency (RF) plasma reactor fed with pure SiH4. The plasma diagnostics were performed simultaneously during the a-Si:H solar cell deposition process using an optical emission spectrometer (OES) in order to study their correlations with growth rate and microstructure of the films. During the deposition, the emitting species (SiH*, Si*, H*) was analyzed. The effect of RF power on the emission intensities of excited SiH, Si and H on the film growth rate has been investigated. The OES analysis revealed a chemisorption-based deposition model of the growth mechanism. Finally, the a-Si:H thin film solar cell with an efficiency of 7.6% has been obtained.  相似文献   

19.
In order to produce thin film capacitors with elevated capacitance and breakdown strength, pulsed laser deposition of the ferroelectric material Ba0.6Sr0.4TiO3 (BST) has been made on (1 1 1)Pt/Ti/SiO2/Si substrates. The films are in situ crystallized at 700 °C, polycrystalline in nature, and exhibit a single perovskite phase. This paper reports on both the effect of the oxygen pressure during heating and deposition, and the influence of different modes of introduction during the deposition stage, on the crystalline and electrical properties of the BST films. Orientation of films depends on the deposition oxygen pressure, with a (1 1 1) preferential orientation obtained when depositing under vacuum. XRD characterization reveals that the out-of-plane parameter of BST films increases when depositions are made under lower oxygen pressure. This phenomenon is related to a higher concentration of vacancies and defects in the films grown under low-pressure environment. However, a local introduction of oxygen on the substrate improves the annihilation of these defects. The crystalline orientation of the films is also highly dependent on the residual oxygen pressure during heating. A high (1 1 1) preferentially oriented BST film is obtained when heating and depositing under 0.1 mbar oxygen pressure. The heating atmosphere is thought to influence the out-diffusion of titanium on the surface of the Pt layer, thus modifying the nucleation and growth of BST films. Aluminum electrodes have been deposited on top of the BST films by dc sputtering to measure electrical capacitances. The calculated dielectric constant of in situ crystallized films deposited under 0.1 mbar oxygen pressure exceeds 500 at 100 kHz under zero dc bias. This high dielectric constant value obtained without post-deposition treatment appears to be of great technological interest.  相似文献   

20.
《Journal of Non》2006,352(23-25):2343-2346
Zinc oxide thin films were deposited on silicon and corning-7059 glass substrates by plasma enhanced chemical vapor deposition at different substrate temperatures ranging from 36 to 400 °C and with different gas flow rates. Diethylzinc as the source precursor, H2O as oxidizer and argon as carrier gas were used for the preparation of ZnO films. Structural and optical properties of these films were investigated using X-ray diffraction, reflection high energy electron diffraction, atomic force microscopy and photoluminescence. Highly oriented films with (0 0 2) preferred planes were obtained on silicon kept at 300 °C with 50 ml/min flow rate of diethylzinc without any post annealing. Reflection high energy electron diffraction pattern also showed the crystalline nature of these films. A textured surface with rms roughness ∼28 nm was observed by atomic force microscopy for the films deposited at 300 °C. A sharp peak at 380 nm in the PL spectra indicated the UV band-edge emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号