首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Reaction of 2,3-diaminopyridine with one equivalent of a functionalised vicinal diketone, in ethanol, yields a series of ligands based upon the pyrido[2,3-b]pyrazine core. The ligands were characterised by 1H, 13C–{1H} NMR, MS and UV–Vis spectroscopy. Reaction of the ligands with one equivalent of {ReBr(CO)5} gave a series of Re-Ln complexes based upon the general formula fac-{ReBr(CO)3(L)} (where L = pyrido[2,3-b]pyrazine-derived ligands, L1L6). Solution IR studies confirmed the retention of the facially capped, tri-carbonyl coordination geometry at rhenium, and 1H NMR studies confirmed coordination of the ligand to Re(I). EI HR MS data were obtained for each complex confirming the proposed formulation and stoichiometry. Single crystal X-ray structures were obtained for three of the complexes (Re-L1, Re-L2, Re-L6), with each demonstrating that the ligands coordinate to Re(I) in a bidentate manner, via a four-membered chelate ring, which was unsymmetrical in the former two cases. The electronic absorption spectra of the complexes showed absorption into the visible region ca. 375–500 nm, (the complexes are orange-red in appearance). Following irradiation at 350–450 nm, the complexes display a solid-state broad emission peaking between 600–700 nm. The complexes were not sufficiently luminescent in solution to allow further investigation into the origin of this emission band, although with reference to related 1,8-naphthyridine complexes of Re(I) it is likely to incorporate significant 3MLCT character.  相似文献   

2.
The complexes (μ3-L1/L2)[Ru(acac)2]3, acac = 2,4-pentanedionato, L1 = 2,3,8,9,14,15-hexachlorodiquinoxalino[2,3-a:2′,3′-c]phenazine and L2 = 2,3,8,9,14,15- hexamethyldiquinoxalino[2,3-a:2′,3′-c]phenazine, undergo stepwise one-electron oxidation involving a total of three electrons and stepwise one-electron reduction with three (L2) or four electrons (L1). All reversibly accessible states were characterized by UV–Vis–NIR spectroelectrochemistry. Oxidation leads to mixed-valent intermediates {(μ3-L)[Ru(acac)2]3}+ and {(μ3-L)[Ru(acac)2]3}2+ of which the RuIIIRuIIRuII combinations exhibit higher comproportionation constants Kc than the RuIIIRuIIIRuII states – in contrast to a previous report for the unsubstituted parent systems {(μ3-L3)[Ru(acac)2]3}+/2+, L3 = diquinoxalino[2,3-a:2′,3′-c]phenazine. No conspicuous inter-valence charge transfer absorptions were observed for the mixed-valent intermediates in the visible to near-infrared regions. The monocations and monoanions were characterized by EPR spectroscopy, revealing rhombic ruthenium(III) type signals for the former. Electron addition produces ruthenium(II) complexes of the reduced forms of the ligands L, a high resolution EPR spectrum with 14N and 35,37Cl hyperfine coupling and negligible g anisotropy was found for {(μ3-L1)[Ru(acac)2]3}. DFT calculations of (μ3-L1)[Ru(acac)2]3 confirm several ligand-centered low-lying unoccupied MOs for reduction and several metal-based high-lying occupied MOs for electron withdrawal, resulting in low-energy metal-to-ligand charge transfer (MLCT) transitions.  相似文献   

3.
The Re(I) complexes bearing 2,6-bis(7-azaindolyl)phenyl ligand as a tridentate ligand were synthesized by treatment with Re2(CO)10. The structures of the complexes were confirmed by X-ray crystallography. Both 7-azaindolyl ligands of Re(I) complexes are present in butterfly forms. The Re-Cipso bonds showed a partial double bond character by π back-donation between the phenyl moiety and Re atom. In THF solution at room temperature, these complexes exhibited green emission (λem=510 nm), which is considered to be attributable to MLCT (dz2(Re) →π* (7-azaindolyl group)) transition containing π→π* (7-azaindolyl group) transition.  相似文献   

4.
Hetero- and homo-leptic Ru(II) complexes of a new 4,4′-bipyrimidine ligand, th2bpm (6,6′-di(2″-thienyl)-4,4′-bipyrimidine), have been synthesized and characterized. The parent ligand th2bpm has electron rich thiophene units on the periphery of a bidentate ligand which is capable of binding to metal ions. The heteroleptic complex of th2bpm [Ru(bpy)2th2bpm]2+ (bpy = 2,2′-bipyridine) exhibits a Ru-to-bpm metal-to-ligand charge transfer (MLCT) absorption centered at 547 nm and a Ru-to-bpy MLCT absorption centered at 438 nm. The assignment of the low energy absorption is supported by the relative ease of electrochemical reduction of the new complex as compared to [Ru(bpy)3]2+. The homoleptic complex, [Ru(th2bpm)3]2+, exhibits a Ru-to-bpm MLCT absorption at slightly higher energy (544 nm). Both complexes are emissive at room temperature in fluid solution and 5 is one of the lowest energy emitters based on tris-bidentate Ru(II) complexes known (λmax = 770 nm). The luminescence spectra is red-shifted compared to [Ru(bpy)3]2+ and this effect is ascribed to the delocalization in the acceptor ligand.  相似文献   

5.
The reactions of N-(aryl)pyridine-2-aldimines (L-R; R = OCH3, CH3, H, Cl and NO2), derived from pyridine-2-aldehyde and para-substituted anilines, with CuI in methanol under ambient conditions afford a series of brown complexes of the type [{Cu(L-R)I}2]. The structure of the [{Cu(L-OCH3)I}2] complex has been determined by X-ray crystallography. In these dimeric complexes the two copper centers are linked through an iodo-bridge, and the L-R ligands are coordinated to the metal center through the pyridine-nitrogen and imine-nitrogen. All the complexes show characteristic 1H NMR signals and intense MLCT transitions in the visible region. These complexes also show an emission near 465 nm, whilst they are excited at 340 nm, with relatively poor quantum yields (φ ∼0.002 at 298 K). Cyclic voltammetry on all the complexes shows two successive Cu(I)-Cu(II) oxidations on the positive side of SCE, and a reduction of the coordinated imine ligand on the negative side. These copper(I) complexes are found to efficiently catalyze Suzuki type C-C coupling reactions.  相似文献   

6.
The syntheses of two new ligands and five new heteroleptic cyclometallated Ir(III) complexes are reported. The ligands are based upon a functionalised anthra[1,2-d]imidazole-6,11-dione core giving LH1−3 incorporating a pendant pyridine, quinoline or thiophene unit respectively. Neutrally charged, octahedral complexes [Ir(ppy)2(L1−3)] are chelated by two cyclometallated phenylpyridine (ppy) ligands and a third, ancillary deprotonated ligand L1−3, whilst cationic analogues could only be isolated for [Ir(ppy)2(LH1−2)][PF6]. X-ray crystal structures for [Ir(ppy)2(L1)], [Ir(ppy)2(LH1)][PF6] and [Ir(ppy)2(L2)] showed the complexes adopt a distorted octahedral coordination geometry, with the anthra[1,2-d]imidazole-6,11-dione ligands coordinating in a bidentate fashion. Preliminary DFT calculations revealed that for the complexes of LH1 and LH2 the LUMO is exclusively localized on the ancillary ligand, whereas the nature of the HOMO depends on the protonation state of the ancillary ligand, often being composed of both Ir(III) and phenylpyridine character. UV-vis. and luminescence data showed that the ligands absorb into the visible region ca. 400 nm and emit ca. 560 nm, both of which are attributed to an intra-ligand CT transition within the anthra[1,2-d]imidazole-6,11-dione core. The complexes display absorption bands attributed to overlapping ligand-centred and 1MLCT-type electronic transitions, whilst only [Ir(ppy)2(L2)] appeared to possess typical 3MLCT behaviour (λem = 616 nm; τ = 96 ns in aerated MeCN). The remaining complexes were generally visibly emissive (λem ≈ 560-570 nm; τ < 10 ns in aerated MeCN) with very oxygen-sensitive lifetimes more indicative of ligand-centred processes.  相似文献   

7.
Femtosecond-resolved broadband fluorescence studies are reported for[M(bpy)3]2+ (M = Fe, Ru), RuN3 and RuN719 complexes in solution. We investigated the pump wavelength dependence of the fluorescence of aqueous [Fe(bpy)3]2+ and the solvent and ligand dependence of the fluorescence of Ru-complexes excited at 400 nm. For all complexes, the 1MLCT fluorescence appears at zero time delay with a mirror-like image with respect to the absorption. It decays in ?30-45 fs due to intersystem crossing to the 3MLCT states, but a longer lived component of ∼190 fs additionally shows up in RuN719 and RuN3. No solvent effects are detected. The very early dynamics are characterized by internal conversion (IC) and intramolecular vibrational redistribution (IVR) processes on a time scale which we estimate to ?10 fs using the 1MLCT lifetime as an internal clock.  相似文献   

8.
The present work reports the synthesis and spectroscopic and electrochemical characterization of homoleptic copper(I) complexes with substituted pirazino [2,3-f]-1,10-phenanthroline, RpplR′, (R = H, Me, COOH or COOMe, and R′ = H, Me) as ligand. The ligand ppl works as an acceptor of electronic density, which is delocalized mainly in the quinoxaline part of its structure. The UV–Vis spectra show that all the complexes display bands in the range 400–650 nm, which are MLCT in character. The λmax and extinction coefficients of the MLCT band at 450 nm and the LC band do not change significatively when varying the R substituent. Nevertheless, the intensity of the shoulder around 500 nm does change; this absorption has been related to either a static or dynamic flattening distortion of the complex D2d → D2 symmetry. The cyclic voltammetry of the complexes shows irreversible redox processes with Ep values that do not follow the tendency expected from the donor/acceptor character of the substituents on the ligand. All the complexes studied showed no emission both in acetonitrile and dichloromethane as solvent at room temperature and under argon atmosphere.  相似文献   

9.
The reaction of cis-[RuCl2(DMSO)4] with a family of aromatic and heterocyclic acid hydrazides yielded new complexes of the general formula trans-[RuCl2(DMSO)2(hydrazide)] · nH2O (n = 0; 16; n = 1; 7). The new complexes have been characterized by IR, UV–Vis and 1H NMR spectroscopic methods. In addition, the structure of one of the complexes, [RuCl2(DMSO)2(tcah)] · H2O (tcah = thiophene-2-carboxylic acid hydrazide), has been determined by single crystal X-ray diffraction. All the studies reveal the neutral bidentate coordination of the hydrazide ligands through the acyl oxygen and amine nitrogen atoms. The electron transfer properties of the complexes were studied by cyclic voltammetry and all the complexes except one show an irreversible/quasi-reversible reduction wave (RuII/RuI) and an uncoupled oxidation peak (RuIII/ RuII). The preliminary DNA-binding ability of the complexes, studied with herring sperm DNA, shows the binding of the complexes with DNA with a lesser affinity than classical intercalators. The complexes have also been screened for their antibacterial activity against five pathogenic bacteria.  相似文献   

10.
Dicobalt(II) complexes [{(B)CoII}2(μ-dtdp)2] (13) of 3,3′-dithiodipropionic acid (dtdp) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2′,3′-c]phenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The elemental analysis and mass spectral data suggest binuclear formulation of the complexes. The redox inactive complexes have magnetically non-interacting dicobalt(II) core showing magnetic moment of ∼3.9 μB per cobalt(II) center. The complexes show good binding propensity to calf thymus DNA giving Kb values within 4.3 × 105–4.0 × 106 M−1. Thermal melting and viscosity data predict DNA groove binding and/or partial intercalative nature of the complexes. The complexes show significant anaerobic DNA cleavage activity in green light under argon atmosphere possibly involving radical species generated from the disulfide moiety in a type-I pathway. The DNA cleavage reaction under aerobic medium in green light is found to involve hydroxyl radical species. The dppz complex 3 exhibits significant photocytotoxicity in HeLa cervical cancer cells with an IC50 value of 2.3 μM in UV-A light of 365 nm, while it is essentially non-toxic in dark giving an IC50 value of >200 μM. A significant reduction of the dark toxicity of the organic dppz base (IC50 = 8.3 μM in dark) is observed on binding to the cobalt(II) center while essentially retaining its photocytotoxicity in UV-A light (IC50 = 0.4 μM).  相似文献   

11.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.  相似文献   

12.
The reaction of [RuHCl(CO)(B)(EPh3)2] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip, or mor) and dehydroacetic acid thiosemicarbazone (abbreviated as H2dhatsc where H2 stands for the two dissociable protons) in benzene under reflux afford a series of new ruthenium(II) carbonyl complexes containing dehydroacetic acid thiosemicarbazone of general formula [Ru(dhatsc)(CO)(B)(EPh3)] (where E = As, B = AsPh3; E = P, B = PPh3, py, pip or mor; dhatsc = dibasic tridentate dehydroacetic acid thiosemicarbazone). All the complexes have been characterized by elemental analyses, FT-IR, UV-Vis, and 1H NMR spectral methods. The thiosemicarbazone of dehydroacetic acid behaves as dianionic tridentate O, N, S donor and coordinates to ruthenium via phenolic oxygen of dehydroacetic acid, the imine nitrogen of thiosemicarbazone and thiol sulfur. In chloroform solution, all the complexes exhibit metal-to-ligand charge transfer transitions (MLCT). The crystal structure of one of the complexes [Ru(dhatsc)(CO)(PPh3)2] (1) has been determined by single crystal X-ray diffraction which reveals the presence of a distorted octahedral geometry in the complexes. All the complexes exhibit an irreversible oxidation (RuIII/RuII) in the range 0.76-0.89 V and an irreversible reduction (RuII/RuI) in the range −0.87 to −0.97 V. Further, the free ligand and its ruthenium complexes have been screened for their antibacterial and antifungal activities. The complexes show better activity in inhibiting the growth of bacteria Staphylococcus aureus and Escherichia coli and fungus Candida albicans and Aspergillus niger. These results made it desirable to delineate a comparison between free ligand and its ruthenium complexes.  相似文献   

13.
Eleven new complexes of the form cis-[RuII(bpy)2(LA)]4+ (bpy = 2,2′-bipyridyl; LA = a pyridinium-substituted bpy derivative) have been prepared and isolated as their PF6 salts. Characterisation involved various techniques including 1H NMR spectroscopy and MALDI mass spectrometry. The UV-Vis spectra show intense intraligand π → π absorptions and metal-to-ligand charge-transfer (MLCT) bands with two distinct maxima in the visible region. Small shifts in the MLCT bands correlate with the electron-withdrawing strength of the ligand LA. Cyclic voltammograms show quasi-reversible or reversible RuIII/II oxidation waves, and two or more ligand-based reductions with varying degrees of reversibility. The variations in the redox potentials correlate with changes in the structure of LA, and also with the MLCT energies. Differential pulse voltammetry allows the first reduction process for two of the complex salts to be resolved into two peaks. Single-crystal X-ray structures have been solved for three of the new complex salts and also for a pro-ligand salt. Two carboxylate-functionalised compounds have been tested as photosensitizers on TiO2-coated electrodes, but show only negligible efficiencies, in accord with expectations.  相似文献   

14.
Treatment of [RuCl3(PPh3)3] with 1-(arylazo)naphthol ligands in benzene under reflux afford air-stable new organoruthenium(III) complexes with general composition [Ru(an-R)Cl(PPh3)2] (where, R = H, Cl, CH3, OCH3, OC2H5) in fairly good yield. The 1-(arylazo)naphtholate ligands behave as dianionic tridentate C, N, O donors and coordinates to ruthenium through phenolic oxygen, azo nitrogen and ortho carbon generate two five-membered chelate rings. The composition of the complexes have been established by analytical (elemental analysis and magnetic susceptibility measurement) and spectral (FT-IR, UV-Vis, EPR) methods. The complexes are paramagnetic (low-spin, d5) in nature and in dichloromethane solution show intense d-d transitions and ligand-to-metal charge transfer (LMCT) transitions in the visible region. The solution EPR spectrum of complex [Ru(an-CH3)Cl(PPh3)2] (3) in dichloromethane at 77 K shows rhombic distortion around the ruthenium ion with three different ‘g’ values (gx ≠ gy ≠ gz). The single crystal structure of the complex [Ru(an-OCH3)Cl(PPh3)2] (4) has been characterised by X-ray crystallography, indicates the presence of a distorted octahedral geometry in these complexes. All the complexes exhibit one quasi-reversible oxidative response in the range 0.60-0.79 V (RuIV/RuIII) and two quasi-reversible reductive responses (RuIII/RuII; RuII/RuI) within the range −0.50 to −0.62 V and −0.93 to −0.98 V respectively. The formal potential of all the couples correlate linearly with the Hammett constant of the para substituent in arylazo fragment of the 1-(arylazo)naphtholate ligand. Further, the catalytic efficiency of one of the ruthenium complexes (4) was determined for the transfer hydrogenation of ketones with an excellent yield up to 99% in the presence of isopropanol/KOH.  相似文献   

15.
Several dendritic bridging ligands were designed and synthesized to develop more sensitive and efficient electrochemiluminescent (ECL) polynuclear Ru(II) complexes. Various types of novel two-armed, four-armed and six-armed tris(bipyridyl)ruthenium core dendrimers were synthesized by coordinating dendritic polybipyridyl ligands with Ru(II) complexes, and the effect of the ligand and the dendritic network on the ECL characteristics were studied. Their electrochemical redox potentials, UV, photoluminescence (PL), and relative ECL intensities were also investigated in detail. The synthesized metallodendrimers exhibited strong metal-to-ligand charge transfer (MLCT) absorption at 428-451 nm and emission at 591-601 nm. Most of the newly synthesized metallodendrimers showed enhanced ECL intensities compared to the reference complex, [Ru(o-phen)3](PF6)2. In particular, the ECL intensities of the six-armed heptanuclear ruthenium complexes were almost four times greater than that of [Ru(o-phen)3]2+. These metallodendrimers could be utilized as efficient ECL materials and light emitting devices.  相似文献   

16.
Subtle ligand modifications on RuII-polypyridyl complexes may result in different excited-state characteristics, which provides the opportunity to tune their photo-physicochemical properties and subsequently change their biological functions. Here, a DNA-targeting RuII-polypyridyl complex (named Ru1 ) with highly photosensitizing 3IL (intraligand) excited state was designed based on a classical DNA-intercalator [Ru(bpy)2(dppz)] ⋅ 2 PF6 by incorporation of the dppz (dipyrido[3,2-a:2′,3′-c]phenazine) ligand tethered with a pyrenyl group, which has four orders of magnitude higher potency than the model complex [Ru(bpy)2(dppz)] ⋅ 2 PF6 upon light irradiation. This study provides a facile strategy for the design of organelle-targeting RuII-polypyridyl complexes with dramatically improved photobiological activity.  相似文献   

17.
A comparative study of complexes [Pd(dphpz)(N∧N)]PF6 [dphpz? is the deprotonated form of 2,3-diphenylpyrazine; (N∧N) is ethylenediamine (En), 2,2′-bipyridine (bpy), o-phenanthroline (phen), dipyrido[a,c]phenazine (dppz), 6,7-dicyanopyrido[f,h]quinoxaline (dicnq)] was made, using 1H NMR, electronic absorption, and emission spectroscopy, and also cyclic voltammetry. Steric interaction of the dphpz? phenyl rings leads to significant proton shielding in the carbanionic moiety of the cyclometallated ligand. Introduction of heterocyclic diimines instead of ethylenediamine decreases the desheilding of the dphpz? protons adjacent to the coordination center. Irrespective of the nature of the N∧N ligands, the cyclopalladated complexes are characterized by specific parameters of photo-and electrostimulated electron transfer processes involving the Pd(dphpz) orbitals, namely, by the long-wave absorption band with λmax 395±6 nm and ε (2.2±1.2) × 103 1 mol?1 cm?1, the vibrationally structured low-temperature (77 K) luminescence resulting from the spinforbidden optical transfer from the excited to the ground state of the complex (energy E 00 19.27±0.07 kK, lifetime τ 160±30 μs), and the one-electron electroreduction wave with E 1?(2.0±0.1)V. For the [Pd(dphpz)·(N∧N)]+ complexes containing diazine derivatives of phenanthroline (dppz, dicnq), the degradation of the photoexcitation energy from two electronically excited states can occur as isolated process with successive transfer of electrons to the π orbitals localized on the remote moieties: [Pd(dphpz)] and diazine fragments of the N∧N ligands.  相似文献   

18.
The new dipyrido[3,2-a:2′,3′-c]phenazine (dppz) copper(II) complex, [Cu(tpy)(dppz)]2+, where tpy is 2,2′:6′,2″-terpyridine, has been prepared and fully characterized by spectroscopic methods and single-crystal X-ray diffraction. Its DNA binding and in vitro cytotoxicity have been also studied. The molecular structure shows a distorted trigonal bipyramidal CuN5 coordination geometry around the copper atom. The bidentate dppz ligand binds in the equatorial plane, while tpy exhibits axial-equatorial bonding. The interaction of the complex with DNA has been investigated by electronic absorption, competitive fluorescence titration, linear dichroism, voltammetric techniques and a gel electrophoresis mobility shift assay. It is proposed that the binding mode of the complex to DNA is of an intercalation nature with the planar dppz ligands located between the base pairs of double-stranded DNA.An in vitro cytotoxicity study of the complex on human breast adenocarcinoma (MCF7) cell line by an MTT assay indicates that the title complex may have the potency to act as an effective anticancer drug, with an IC50 value of 4.57 μM (3.62-5.77).  相似文献   

19.
{Os(bpy)2}2+ and {Ru(CN)4}2− mononuclear and binuclear complexes with ligands 2,3-di-(2-pyridyl)quinoxaline (dpq) and dipyrido[2,3-a:3′,2′-c]phenazine (ppb) have been prepared. For the binuclear complexes a splitting in oxidation potentials is observed consistent with the formation of mixed-valence species with comproportionation constants (Kcom) ranging from 2.5 × 104 to 1.8 × 106. The electronic absorption spectra of the mixed-valence species reveal IVCT transitions in the near infrared region. The absorption maximum for the IVCT band ranges from 5800 to 9980 cm−1 and the extinction coefficients from 80 to 6300 M−1 cm−1. In general the {Os(bpy)2}2+ complexes show larger Kcom values and more intense IVCT bands than the corresponding {Ru(CN)4}2− complexes.  相似文献   

20.
A series of dichlorodiimine complexes [M(N N)Cl2]z of Au(III) and Pt(II) with 1,4-derivatives of o-phenanthroline [(N N) = o-phenanthroline (phen), dipyrido[f,h]quinoxaline (dpq), dipyrido[a,c]phenazine (dppz), 6,7-dicyanodipyrido[f,h]quinoxaline (dicnq)] were prepared and characterized by 1H NMR, electronic absorption, and emission spectroscopy and by cyclic voltammetry. In all the complexes, the 3(π-π*)-type transition is the spin-forbidden transition of the lowest energy, responsible for the luminescence. The longest wave bands in the absorption spectra of the Au(III) and Pd(II) complexes were assigned in accordance with the results of the electrochemical studies to the 1(d*)-and 1(d*)-type transitions, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号