首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A numerical technique for solving time-dependent problems with variable coefficient governed by the heat, convection diffusion, wave, beam and telegraph equations is presented. The Sinc–Galerkin method is applied to construct the numerical solution. The method is tested on three problems and comparisons are made with the exact solutions. The numerical results demonstrate the reliability and efficiency of using the Sinc–Galerkin method to solve such problems.  相似文献   

2.
This article studies a numerical solution method for a special class of continuous time linear programming problems denoted by (SP). We will present an efficient method for finding numerical solutions of (SP). The presented method is a discrete approximation algorithm, however, the main work of computing a numerical solution in our method is only to solve finite linear programming problems by using recurrence relations. By our constructive manner, we provide a computational procedure which would yield an error bound introduced by the numerical approximation. We also demonstrate that the searched approximate solutions weakly converge to an optimal solution. Some numerical examples are given to illustrate the provided procedure.  相似文献   

3.
A numerical technique for solving time-dependent problems with variable coefficient governed by the heat, convection diffusion, wave, beam and telegraph equations is presented. The Sinc–Galerkin method is applied to construct the numerical solution. The method is tested on three problems and comparisons are made with the exact solutions. The numerical results demonstrate the reliability and efficiency of using the Sinc–Galerkin method to solve such problems. Received: January 18, 2005  相似文献   

4.
In the analytic hierarchy process (AHP), a decision maker first gives linguistic pairwise comparisons, then obtains numerical pairwise comparisons by selecting certain numerical scale to quantify them, and finally derives a priority vector from the numerical pairwise comparisons. In particular, the validity of this decision-making tool relies on the choice of numerical scale and the design of prioritization method. By introducing a set of concepts regarding the linguistic variables and linguistic pairwise comparison matrices (LPCMs), and by defining the deviation measures of LPCMs, we present two performance measure algorithms to evaluate the numerical scales and the prioritization methods. Using these performance measure algorithms, we compare the most common numerical scales (the Saaty scale, the geometrical scale, the Ma–Zheng scale and the Salo–Hämäläinen scale) and the prioritization methods (the eigenvalue method and the logarithmic least squares method). In addition, we also discuss the parameter of the geometrical scale, develop a new prioritization method, and construct an optimization model to select the appropriate numerical scales for the AHP decision makers. The findings in this paper can help the AHP decision makers select suitable numerical scales and prioritization methods.  相似文献   

5.
A high-order finite difference method for the two-dimensional coupled nonlinear Schrödinger equations is considered. The proposed scheme is proved to preserve the total mass and energy in a discrete sense and the solvability of the scheme is shown by using a fixed point theorem. By converting the scheme in the point-wise form into a matrix–vector form, we use the standard energy method to establish the optimal error estimate of the proposed scheme in the discrete L2-norm. The convergence order is proved to be of a fourth-order in space and a second-order in time, respectively. Finally, some numerical examples are given in order to confirm our theoretical results for the numerical method. The numerical results are compared with exact solutions and other existing method. The comparison between our numerical results and those of Sun and Wangreveals that our method improves the accuracy of space and time directions.  相似文献   

6.
A numerical solution of the generalized Burger’s–Huxley equation, based on collocation method using Radial basis functions (RBFs), called Kansa’s approach is presented. The numerical results are compared with the exact solution, Adomian decomposition method (ADM) and Variational iteration method (VIM). Highly accurate and efficient results are obtained by RBFs method. Excellent agreement with the exact solution is observed while better (or same) accuracy is obtained than other numerical schemes cited in this work.  相似文献   

7.
In this report, we give a semi‐discrete defect correction finite element method for the unsteady incompressible magnetohydrodynamics equations. The defect correction method is an iterative improvement technique for increasing the accuracy of a numerical solution without applying a grid refinement. Firstly, the nonlinear magnetohydrodynamics equations is solved with an artificial viscosity term. Then, the numerical solutions are improved on the same grid by a linearized defect‐correction technique. Then, we give the numerical analysis including stability analysis and error analysis. The numerical analysis proves that our method is stable and has an optimal convergence rate. In order to show the effect of our method, some numerical results are shown. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a method to construct numerical solutions of parabolic equations on the unit sphere. The time discretization uses Laplace transforms and quadrature. The spatial approximation of the solution employs radial basis functions restricted to the sphere. The method allows us to construct high accuracy numerical solutions in parallel. We establish L 2 error estimates for smooth and nonsmooth initial data, and describe some numerical experiments.  相似文献   

9.
To ensure the proper qualitative characteristic of approximate numerical solution of the Cauchy problem for a system of ordinary differential equations, it is necessary to formulate certain conditions that have to be satisfied by numerical methods. The efficiency of a numerical method is determined by constructing the algorithm of integration step changing and the choice of the order of the method. The construction of such a method requires one to determine preliminarily the admissible error of the method in each integration step. A theorem on the evaluation of the local error of multistep numerical p th-order methods with variable integration step without taking into account the round-off error is formulated. This theorem enables one to construct an efficient algorithm for the step change and the choice of the corresponding order of the method.  相似文献   

10.
Abstract The binomial tree method is the most popular numerical approach to pricing options. However, for currency lookback options, this method is not consistent with the corresponding continuous models, which leads to slow speed of convergence. On the basis of the PDE approach, we develop a consistent numerical scheme called the modified binomial tree method. It possesses one order of accuracy and its efficiency is demonstrated by numerical experiments. The convergence proofs are also produced in terms of numerical analysis and the notion of viscosity solution. Supported by National Science Foundation of China (No. 19871062)  相似文献   

11.
Front tracking in combination with dimensional splitting is analyzed as a numerical method for scalar conservation laws in two space dimensions. An analytic error bound is derived, and convergence rates based on numerical experiments are presented. Numerical experiments indicate that large CFL numbers can be used without loss of accuracy for a wide range of problems. A new method for grid refinement is introduced. The method easily allows for dynamical changes in the grid, using, for instance, the total variation in each grid cell as a criterion for introducing new or removing existing refinements. Several numerical examples are included, highlighting the features of the numerical method. A comparison with a high-resolution method confirms that dimensional splitting with front tracking is a highly viable numerical method for practical computations. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 627–648, 1998  相似文献   

12.
In this paper, a numerical solution of the generalized Burgers–Huxley equation is presented. This is the application of spectral collocation method. To reduce roundoff error in this method we use Darvishi’s preconditionings. The numerical results obtained by this method have been compared with the exact solution. It can be seen that they are in a good agreement with each other, because errors are very small and figures of exact and numerical solutions are very similar.  相似文献   

13.
The authors study the multi-soliton,multi-cuspon solutions to the CamassaHolm equation and their interaction.According to the solution formula due to Li in 2004and 2005,the authors give the proper choi...  相似文献   

14.
Tamas Ladics 《PAMM》2007,7(1):2020135-2020136
Operator splitting is a widely used method in the numerical solution of partial differential equations. A comparison of the different splitting techniques in the solution of 1 and 2 dimensional reaction-diffusion equations is made. The process of the solution is a composition of certain splitting procedure and a given numerical method. We study the interaction between the different splitting procedures and different numerical schemes. The order of the convergence of this composed method is calculated. The error of the approximate solution is characterized as a funct ion of the applied splitting and numerical scheme. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Monge-Ampère equation is a nonlinear equation with high degree, therefore its numerical solution is very important and very difficult. In present paper the numerical method of Dirichlet's problem of Monge-Ampère equation on Cartan-Hartogs domain of the third type is discussed by using the analytic method. Firstly, the Monge-Ampère equation is reduced to the nonlinear ordinary differential equation, then the numerical method of the Dirichlet problem of Monge-Ampère equation becomes the numerical method of two point boundary value problem of the nonlinear ordinary differential equation. Secondly, the solution of the Dirichlet problem is given in explicit formula under the special case, which can be used to check the numerical solution of the Dirichlet problem.  相似文献   

16.
This paper presents an efficient numerical method for finding solutions of the nonlinear Fredholm integral equations system of second kind based on Bernstein polynomials basis. The numerical results obtained by the present method have been compared with those obtained by B‐spline wavelet method. This proposed method reduces the system of integral equations to a system of algebraic equations that can be solved easily any of the usual numerical methods. Numerical examples are presented to illustrate the accuracy of the method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A numerical method based on B-spline is developed to solve the general nonlinear two-point boundary value problems up to order 6. The standard formulation of sextic spline for the solution of boundary value problems leads to non-optimal approximations. In order to derive higher orders of accuracy, high order perturbations of the problem are generated and applied to construct the numerical algorithm. The error analysis and convergence properties of the method are studied via Green’s function approach. O(h6) global error estimates are obtained for numerical solution of these classes of problems. Numerical results are given to illustrate the efficiency of the proposed method. Results of numerical experiments verify the theoretical behavior of the orders of convergence.  相似文献   

18.
In this paper, we concentrate on the numerical approximation of solutions of stochastic delay integro-differential equations with Markovian switching (SDIDEsMS). We establish the split-step backward Euler (SSBE) scheme for solving linear SDIDEsMS and discuss its convergence and stability. Moreover, the SSBE method is convergent with strong order γ = 1/2 in the mean-square sense. The conditions under which the SSBE method is mean-square stable and general mean-square stable are obtained. Some illustrative numerical examples are presented to demonstrate the stability of the numerical method and show that SSBE method is superior to Euler method.  相似文献   

19.
In this paper, we present the compensated stochastic θ method for stochastic age-dependent delay population systems (SADDPSs) with Poisson jumps. The definition of mean-square stability of the numerical solution is given and a sufficient condition for mean-square stability of the numerical solution is derived. It is shown that the compensated stochastic θ method inherits stability property of the numerical solutions. Finally, the theoretical results are also confirmed by a numerical experiment.  相似文献   

20.
A numerical method is proposed for solving singularly perturbed one-dimensional parabolic convection–diffusion problems. The method comprises a standard implicit finite difference scheme to discretize in temporal direction on a uniform mesh by means of Rothe's method and B-spline collocation method in spatial direction on a piecewise uniform mesh of Shishkin type. The method is shown to be unconditionally stable and accurate of order O((Δx)2t). An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. Several numerical experiments have been carried out in support of the theoretical results. Comparisons of the numerical solutions are performed with an upwind finite difference scheme on a piecewise uniform mesh and exponentially fitted method on a uniform mesh to demonstrate the efficiency of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号