首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Fe segregation near the free surface of V model alloys containing 2, 5, or 7 at % Fe is investigated by x-ray photoelectron spectroscopy. Segregation is induced by 50-keV V+ ion irradiation at a temperature of 30–40°C with fluences ranging from 1019 to 1021. Young’s moduli in these alloys are measured by the torsion pendulum method. The degree of Fe segregation is estimated, and its dependence on the irradiation dose and iron concentration in these alloys is analyzed. Correlation is found between the behavior of Young’s moduli and the degree of iron surface segregation as functions of the Fe concentration in the alloys.  相似文献   

2.
We present the results of a comparative analysis of profiles of the radiation-induced segregation of chromium after irradiation of model alloys Fe-(9, 11, 14) at % Cr by He+ ions with the energy of 30 keV with fluences 1019–1021 ions/m2 at 450°C and data on varying the moduli of normal elasticity and the structure of these alloys depending on the Cr concentration. It is shown that an interstitial migration mechanism is the determining factor in the case of chromium segregation near the surface. A correlation between the character of varying the elasticity moduli, order, and value of surface segregation and swelling of the Fe-Cr alloys depending on the Cr concentration is established.  相似文献   

3.
Ferritic-martensitic 12Cr-MoWSiVNbB (EP-823) steel was irradiated with 7 MeV Ni++ ions within fluence interval 5 × 1018−5.4 × 1019 ions/m2 and with 30 and 70 keV He+ ions within fluence interval 1020–1021 ions/m2 at 500°C. Results from a comparative analysis of Cr and Si radiation-induced segregation profiles near the surface are presented. Dependence of the amount of surface segregation on damage dose, displacement generation rate, and radiation-induced point defects concentration is established.  相似文献   

4.
Q. Xu  T. Yoshiie 《哲学杂志》2013,93(28):3716-3726
The formation of Cu precipitates and point defect clusters was investigated in two Fe–Cu binary model alloys, Fe–0.3Cu and Fe–0.6Cu, irradiated at 573?K at three different damage rates, namely 3.8?×?10?10, 1.5?×?10?8 and 5?×?10?8?dpa (displacements per atom)/s, up to about 1.6?×?10?2?dpa. Results of positron annihilation experiments indicated that Cu precipitates were formed in these irradiations with different damage rates. The growth of Cu precipitates does not increase monotonously with increasing irradiation dose, but it rather depends on the nucleation and growth of microvoids. It is also clear that the nucleation and growth of microvoids are influenced by the irradiation dose rate.  相似文献   

5.
The evolution of radiation damage in Fe and Fe–Cr alloys under heavy-ion irradiation was investigated using transmission electron microscopy. Thin foils were irradiated with 100 or 150 keV Fe+ and Xe+ ions at room temperature (RT) and 300°C. Dynamic observations followed the evolution of damage and the early stages in damage development are reported. Small (2–5 nm) dislocation loops first appeared at doses between 1016 and 1017 ions m?2 in all materials. Loop number densities depended strongly on the foil orientation in pure Fe but not in Fe–Cr alloys. Number densities did not depend strongly on Cr content. For a given material, defect yields were higher for Xe+ ions than for Fe+ ions, and were higher at RT than at 300°C. Loops with both ?100? and ½?111? Burgers vectors were identified. The proportion of ?100? loops was larger, especially in pure Fe. Dynamic observations showed that: the contrast of some new loops developed over intervals as long as 0.2 s; hopping of ½?111? loops was induced by the ion and electron beams and was pronounced in ultra-pure iron; and many loops were lost during and after ion irradiation by glide to the foil surface. The number of loops retained was strongly dependent on the foil orientation in Fe, but less so in Fe–Cr alloys. This is due to lower loop mobility in Fe–Cr alloys, probably due to pinning by Cr atoms. Reduced loop loss probably explains the higher loop number densities in Fe–Cr alloys compared with pure Fe.  相似文献   

6.
The results of studying the redistribution of Be, Al, Ti, Fe, Cu, Zr, Mo, and W atoms incorporated in polycrystalline metal samples under irradiation with He+, (He+ + Ar+), and Ar+ ion beams with a broad energy spectrum and an average energy of 10 keV at irradiation doses of 1 × 1021 ion/cm2 are studied. It is discovered that irradiation at doses exceeding 1 × 1019 ion/cm2 results in local small-crystal formations being produced in a near-surface substrate layer. Their typical dimensions are less than 1–5 μm, and their the density is up to 1–100. They contain incorporated atoms and impurity atoms with a concentration of 0.1–10 at %. Subsequent irradiation at a dose of 1 × 1020 ions/cm2 or more leads to disappearance of these formations, mainly because of sputtering processes.  相似文献   

7.
Pure iron foils were implanted with nitrogen ions at energy of 10 keV and with 1×1017N ions/cm2. Doses of pre-self-implantation were 5×1016 and 3.7×1016 17Fe ions/cm2 respectively, and the iron ion energy was 27 keV. A comparison of iron nitrides formed on surfaces with and without pre-self-implantation has been obtained. The results show that radiation damage apparently influences the formation of iron nitrides. The formation and transformation of nitrides after N implantation or after annealing can be explained by a model of implantation-induced transformation.  相似文献   

8.
Ion‐beam mixing of Fe–Mn bilayers induced by 100 keV krypton ions in the dose range (0.1-15)×1015 ions/cm2has been studied by means of conversion electron Mössbauer spectroscopy and X‐ray diffraction. The results indicate that a dose of about 1 ×1015 Kr+/cm2 is sufficient to induce an appreciable mixing between the two atomic species. The α-Fe(Mn)solid solution presents a maximum at this dose, while at higher doses also the ? and γFe–Mn phases are formed in an appreciable amount. Heating of irradiated samples evidences the metastable character of ? phase and favours the growth of the terminal structures γ-Fe(Mn) and α-Mn(Fe) of the Fe–Mn equilibrium phase diagram.  相似文献   

9.
Boron implanted 4145 steel was evaluated for changes in the near-surface region property such as microhardness. The surfaces when implanted with 11B+ ions at 135 keV energy to a dose 1 × 1017 ions cm?2 resulted in increase of microhardness for 10 to 40 gms of applied load. An increase upto 40% in microhardness could be observed in the specimen when annealed at 310δC for 3 hours. Furthermore, the effect of ion-beam induced intermixing of 250Å thin carbon film due to boron implantation was also studied for different doses ranging from 1 × 1017 to 3 × 1017 boron ions cm?2. An increase in microhardness with applied load was observed for 1 × 1017 ions cm?2 concentration, while hardest layer was formed at 3 × 1017 ions cm?2 dose which practically had very little effect to 10 and 20 gms of load.  相似文献   

10.
郝小鹏  王宝义  于润升  魏龙 《物理学报》2007,56(11):6543-6546
采用慢正电子束多普勒展宽谱研究了Zr离子注入Zr-4合金产生的缺陷及其退火回复行为,发现经过大于离子注入剂量为1×1016cm-2的样品所产生的缺陷在注入过程中已经回复,而对剂量为1×1015cm-2样品做300℃退火处理,其缺陷基本回复,得出合金缺陷回复能较低的结论. 考虑到材料的缺陷含量越高,其抗腐蚀性能越差,在辐照环境下通过给材料保持一定温度,即可使其缺陷得到较好回复,从而提高材料的抗腐蚀性能.  相似文献   

11.
The initial stages of oxidation of the (100) surface of a single crystal alloy specimen of approximate atomic composition Ni 59, Fe 41 (at%) have been studied by Auger spectroscopy and electron diffraction techniques. The clean alloy surface shows only a slight iron enrichment over the temperature range of the oxidation studies (373–873 K). Oxidation studies were performed over the O2 pressure range 5 × 10?9 to 1 × 10?6 Torr. Within these experimental conditions the rate of oxygen uptake was found to be linear in pressure and essentially independent of temperature. LEED studies showed that a chemisorbed c(2 × 2) structure preceded the formation of surface oxides. The interaction of oxygen with the surface induced a marked segregation of iron and this was particularly pronounced at elevated temperatures. Chemical shifts were observed in the low energy Ni and Fe Auger spectra during oxidation; these were similar to those previously observed in separate studies of the oxidation of pure Ni and of pure Fe. At the higher temperatures the initial oxide layer grew epitaxially apparently as a (111) cubic oxide on the (100) substrate. The Ni to Fe concentration ratio in oxides several layers thick was found to depend on the temperature of the reaction; at higher temperatures the oxide were more Fe-rich. The Fe to Ni ratio in oxides produced at lower temperatures could be increased by annealing. At large O2 exposures (about 5000 L) a transition was observed in the structure of the oxide layer.  相似文献   

12.
The features of processes occurring on the surface of vanadium and its alloys irradiated using the ILU ion-beam accelerator with Ar+ ions at an energy of 20 and 40 keV up to doses of 5.0 × 1021 m?2 and 1.0 × 1022 m?2 at T irr ≈ 700 K are studied. The effect of the dose and energy of implanted ions on the surface hardness is obtained. The thickness of the hardened layer is more than two orders of magnitude higher than the theoretical and experimental projected range of Ar+ ions at an energy of 20 and 40 keV in vanadium. Structural changes in the surface layers, which are expressed in a change in the intensity of reflections from a number of planes and an increase in the crystal-lattice parameter of the irradiated materials, are also observed.  相似文献   

13.
Alloys of the systems Fe–Al (mixable over the whole concentration range) and Fe–Mg (insoluble with each other) were produced by implantation of Fe ions into Al and Mg, respectively. The implantation energy was 200 keV and the ion doses ranged from 1 × 1014 to 9 × 1017cm-2The obtained implantation profiles were determined by Auger electron spectroscopy depth profiling. Maximum iron concentrations reached were up to 60 at.% for implantation into Al and 94 at.% for implantation into Mg. Phase analysis of the implanted layers was performed by conversion electron Mössbauer spectroscopy and X‐ray diffraction. For implantation into Mg, two different kinds of Mössbauer spectra were obtained: at low doses paramagnetic doublets indicating at least two different iron sites and at high doses a dominant ferromagnetic six‐line‐pattern with a small paramagnetic fraction. The X‐ray diffraction pattern concluded that in the latter case a dilated αiron lattice is formed. For implantation into Al, the Mössbauer spectra were doublet structures very similar to those obtained at amorphous Fe–Al alloys produced by rapid quenching methods. They also indicated at least two different main iron environments. For the highest implanted sample a ferromagnetic six‐line‐pattern with magnetic field values close to those of Fe3Al appeared.  相似文献   

14.
We report on effects of Fe implantation doping-induced changes in structural, optical, morphological, and vibrational properties of cadmium sulfide thin films. Films were implanted with 90 keV Fe+ ions at room temperature for a wide range of fluences from 0.1×1016 to 3.6×1016 ions cm−2 (corresponding to 0.38–12.03 at.% of Fe). Glancing angle X-ray diffraction analysis revealed that the implanted Fe atoms tend to supersaturate by occupying the substitutional cationic sites rather than forming metallic clusters or secondary phase precipitates. In addition, Fe doping does not lead to any structural phase transformation although it induces structural disorder and lattice contraction. Optical absorption studies show a reduction in the optical band gap from 2.39 to 2.17 eV with increasing Fe concentration. This is attributed to disorder-induced band tailing in semiconductors and ion-beam-induced grain growth. The strain associated with a lattice contraction is deduced from micro-Raman scattering measurements and is found that size and shape fluctuations of grains, at higher fluences, give rise to inhomogeneity in strain.  相似文献   

15.
New complex field-ion microscopic data for the formation of radiation-induced defects in VChV ultrapure tungsten, VA-3 commercial-grade tungsten, and four slightly diluted tungsten-based alloys (W-Hf-C, P39A; W-1.5% ThO2, VT-15; W-5% Re, VR-5; and W-2% Fe, VZh-2) are reported. Samples were irradiated in an external unit by Ar+ and Ni+ ions of energy 35 keV. In the experiments, the ion current is kept at j=2.0 μA and the irradiation fluence equals Φt=5×1014 ions/cm2. The clustering of single vacancies in samples irradiated is studied in relation to the impurity concentration and type. The distribution of vacancy clusters over the number of aggregated single vacancies is studied. These distributions are found to differ noticeably inside and outside the depletion zones. The mean lengths of focused substitutional atomic collision chains in samples with different impurity concentrations and types are measured indirectly. From these data, the efficiency of trapping intrinsic interstitials by various impurities in tungsten is estimated.  相似文献   

16.
The effects of bombardment of 250 keV argon ions in n-type GaSb at fluences 2×1015 and 5×1015 ions cm?2 were investigated by high-resolution X-ray diffraction (HRXRD), Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). HRXRD studies revealed the presence of radiation-damaged layer (strained) peak in addition to the substrate peak. The variation in the lattice constant indicates the strain in the bombarded region. The out-of-plane (?) and in-plane strains (?|) determined from the profiles of several symmetric and asymmetric Bragg reflections, respectively, were found to change with the ion fluence. Simulations of XRD patterns using dynamical theory of X-ray scattering (single-layer model) for the damaged layer yielded good fits to the recorded profiles. FTIR transmission studies showed that the optical density (α·d) of GaSb bombarded with different fluences increases near the band edge with increase in ion fluence, indicating the increase in the defect concentration. The density of the defects in the samples bombarded with different fluences was in the range of 3.20×1021–3.80×1021 cm?3. The tailing energy estimated from the transmission spectra was found to change from 12.0 to 58.0 meV with increasing ion fluences, indicating the decrease of crystallinity at higher fluences. SEM micrographs showed the swelling of the bombarded surface of about 0.33 μm for the fluence of 2×1015 ions cm?2, which increased to 0.57 μm for the fluence of 5×1015 ions cm?2.  相似文献   

17.
ZnO thin films, irradiated by 80 MeV Ni+ ions, were analysed with the help of different characterization techniques like X-ray diffraction, optical absorption, transmission, photoluminescence (PL), electrical resistivity, photosensitivity (PS) and thermally stimulated current (TSC) measurements. Crystallinity and absorption edge were hardly affected by irradiation. PL spectrum of pristine sample showed a broad peak at 517 nm, whereas irradiated film had two emissions at 517 and 590 nm. Intensity ratio between these two emissions (I517/I590) decreased with the fluence, and finally at a fluence of 3×1013 ions/cm2, the emission at 517 nm completely disappeared. Electrical resistivity of the sample irradiated with a fluence of 1×1013 ions/cm2 drastically increased. However, on increasing the fluence to 3×1013 ions/cm2, resistivity decreased, probably due the onset of hopping conduction through defects. PS also decreased due to irradiation. TSC measurements on pristine sample could reveal only one defect level at 0.6 eV, due to interstitia1 zinc (ZnI). But, irradiation at a fluence of 1×1012 ions/cm2, resulted in three different defect levels as per TSC studies. Interestingly, the sample irradiated at a fluence of 3×1013 ions/cm2 had only one defect level corresponding to a deep donor. The possible origin of these defect levels is also discussed in the paper.  相似文献   

18.
This work presents the results of a low-energy nitrogen ion implantation of AISI 304 type stainless steel (SS) at a moderate temperature of about 500°C. The nitrogen ions are extracted from a Kauffman-type ion source at an energy of 30 keV, and ion current density of 100 μA cm−2. Nitrogen ion concentration of 6 × 1017, 8 × 1017 and 1018 ions cm−2, were selected for our study. The X-ray diffraction results show the formation of CrN polycrystalline phase after nitrogen bombardment and a change of crystallinity due to the change in nitrogen ion concentration. The secondary ion mass spectrometry (SIMS) results show the formation of CrN phases too. Corrosion test has shown that corrosion resistance is enhanced by increasing nitrogen ion concentration.   相似文献   

19.
Fe implanted SnO2 films (5 × 1016 and 1 × 1017 57Fe ions/cm2) characterized by conversion electron Mossbauer spectroscopy (CEMS) are reviewed. The substrate temperatures affect the growth of precipitated iron oxides. The Fe ion implanted film at room temperature (RT) shows no Kerr effect and no magnetic sextet in CEM spectra. The SnO2 film implanted with 57Fe at the substrate temperature of 300 °C show a small Kerr effect although the magnetic sextet is not observed, but post-annealing results in the disappearance of the Kerr effect. This magnetism is considered to be due to defect induced magnetism. Some samples were measured by CEMS at 15 K. SnO2 (0.1 at %Sb and 3 at %Sb) films, implanted at 500 °C and the post-annealed samples, show RT ferromagnetism due to formation of clusters of magnetite and maghemite, respectively. The layer by layer analysis of these films within 100 nm in thickness has been done by depth sensitive CEMS (DCEMS) using a He + 5 % CH4 gas counter. The structures and compositions of Fe implanted SnO2 films, and the effects due to post-annealing were investigated.  相似文献   

20.
The diffusion of 59Fe and 60Co has been measured in pure CoO and dilute iron-doped CoO, (Co1?cFecO, as a function of temperature (1000–1400°C) and oxygen partial pressure Po2), (10?7Po2 ≦ 0 21 atm) The enhancement factors for the diffusivities of iron and cobalt are nearly identical, which suggests that the primary cause of the enhancement is the increased concentration of charge-compensating cation vacancies with the addition of iron. The Fe ions dissolved in CoO appear to exist as a mixture of Fe2+ and Fe3+ ions, the fraction of iron ions in the three-plus state decreases with decreasing Po2 The simultaneous diffusion of 52Fe and 59Fe has been measured as a function of (itpo; at 1200°C The correlation factor for Fe impurity diffusion determined from the isotope-effect measurements is about the same as that for self-diffusion in CoO at high (itPo2 (2 × 10?3po2 ≦ 0 21 atm), but increases slightly with decreasing pO2 Both the enhancement-effect and isotope-effect experiments suggest that the nearestneighbor interactions between Fe ions and vacancies is small, and that the dissolved Fe ions do not have strongly bound electron holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号