首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1,3-bis(trimethylsilyl)propyne can be easily prepared by reductive silylation of HCCCH2OR (R = Me, SiMe3) by the Me3SiCl/Li/THF reagent.  相似文献   

2.
Tris(trimethylsilyl)silylamine and the lithiated and silylated Derivatives — X-Ray Structure of the dimeric Lithium Trimethylsilyl-[tris(trimethylsilyl)silyl]amide The ammonolysis of the chlor, brom or trifluormethanesulfonyl tris(trimethylsilyl)silane yields the colorless tris(trimethylsilyl)silylamine, destillable at 51°C and 0.02 Torr. The subsequent lithiation, reaction with chlor trimethylsilane and repeated lithiation lead to the formation of lithium tris(trimethylsilyl)silylamide, trimethylsilyl-[tris(trimethylsilyl)silyl]amine and finally lithium trimethylsilyl-[tris(trimethylsilyl)silyl]amide, which crystallizes in the monoclinic space group P21/n with a = 1 386.7(2); b = 2 040.2(3); c = 1 609.6(2) pm; β = 96.95(1)° and Z = 4 dimeric molecules. The cyclic Li2N2 moiety with Li? N bond distances displays a short transannular Li …? Li contact of 229 pm. The dimeric molecule shows nearly C2-symmetry, so that one lithium atom forms agostic bonds to both the trimethylsilyl groups, the other one to the tris(trimethylsilyl)silyl substituents. However, the 7Li{1H}-NMR spectrum displays a high field shifted singlet at —1.71 ppm. The lithiation of trimethylsilyl-[tris(trimethylsilyl)silyl]amine leads to a high field shift of the 29Si{1H} resonance of about 12 ppm for the Me3SiN group, whereas the parameters of the tris(trimethylsilyl)silyl ligand remain nearly unaffected.  相似文献   

3.
Heteroleptic Diorganylzinc Compounds with a Bis(trimethylsilyl)phosphido Substituent Dialkylzinc ZnR2 (Me, Et, iso-Pr, nBu, tBu, CH2SiMe3) reacts with one equivalent of bis(trimethylsilyl)-phosphine in carbohydrates to the heteroleptic compounds RZnP(SiMe3)2; dependent from the steric demand of the alkyl group R the derivatives are dimeric or trimeric in solution as well as in the solid state. Monomeric bis(trimethylsilyl)phosphido-tris(trimethylsilyl)methylzinc yields from the reaction of lithium tris(trimethylsilyl)methanide and lithium bis(trimethylsilyl)phosphide with zinc(II) chloride. Bis(trimethylsilyl)phosphido-methylzinc crystallizes in the orthorhombic space group P212121 with {a = 1 007.6(1); b = 1 872.3(3); c = 2 231.0(4) pm; Z = 4} as a trimeric molecule with a central cyclic Zn3P3 moiety in the twist-boat conformation. Bis(trimethylsilyl)phosphido-n-butylzinc, that crystallizes in the orthorombic space group Pben with {a = 1 261.7(2); b = 2 253.0(4); c = 1 798.9(2) pm; Z = 4}, shows a simular central Zn3P3 fragment. The sterically more demanding trimethylsilylmethyl substituent leads to the formation of a dimeric molecule of bis(trimethylsilyl)phosphido-trimethylsilylmethylzinc {monoklin, P21/c; a = 907.2(4); b = 2 079.8(8), c = 1 070,2(3) pm; β = 103,48(1)°; Z = 2}. Bis(trimethylsilyl)phosphido-iso-propylzinc shows in solution a temperature-dependent equilibrium of the dimeric and trimeric species; the crystalline state contains a 1:1 mixture of these two oligomers {orthorhombisch; Pbca; a = 1 859.0(3); b = 2 470.9(2); c = 3 450.7(3) pm; Z = 8}. The Zn? P bond lengths vary in a narrow range around 239 pm, the Zn? C distances were found between 196 and 203 pm.  相似文献   

4.
Synthesis and Structure of Lithium Tris(trimethylsilyl)silanide · 1,5 DME Lithium tris(trimethylsilyl)silanide · 1,5 DME 2a synthesized from tetrakis(trimethylsilyl)silane 1 [6] and methyllithium in 1,2-dimethoxyethane , crystallizes in the monoclinic space group P21/c with following dimensions of the unit cell determined at a temperature of measurement of ?120 ± 2°C: a = 1 072.9(3); b = 1 408.3(4); c = 1 775.1(5) pm; β = 107.74(2)°; 4 formula units (Z = 2). An X-ray structure determination (Rw = 0.040) shows the compound to be built up from two [lithium tris(trimethylsilyl)silanide] moieties which are connected via a bridging DME molecule. Two remaining sites of each four-coordinate lithium atom are occupied by a chelating DME ligand. The Li? Si distance of 263 pm is considerably longer than the sum of covalent radii; further characteristic mean bond lengths and angles are: Si? Si 234, Li? O 200, O? C 144, O?O (biß) 264 pm; Si? Si? Si 104°, Li? Si? Si 107° to 126°; O? Li? O (inside the chelate ring) 83°. Unfortunately, di(tert-butyl)bis(trimethylsilyl)silane 17 prepared from di(tert-butyl)dichlorsilane 15 , chlorotrimethylsilane and lithium, does not react with alkyllithium compounds to give the analogous silanide.  相似文献   

5.
The structure of 9-trimethylsilyl-9,10-dihydroanthracene (Me3SiDHA) has been studied by NMR; the coupling constants of the three 9,10 protons do not change at between 25 and 90°C (ABM spectrum; JAB }- 18.2; JAM ? 1.2; JBM ? 0.3 Hz in toluene-d8), indicating that the Me3Si group prefers the quasi axial position. In the presence of BuLi in THF, Me3SiDHA reacts with Me3SiCl to yield three new products: 9,9-bis(trimethylsilyl)-9,10-dihydroanthracene (IId) (major), (9,10-dihydroanthracen-9-yl)dimethylsilyl(trimethylsilyl)methane (V) and (9-trimethylsilyl-9,10-dihydroanthracen-9-yl)dimethylsilyl(trimethylsilyl)-methane (VI) together with the known 9,10-bis(trimethylsilyl)-9,10-dihydroanthracene (cis and trans). The carbanion of Me3SiDHA can also be alkylated (alkyl  Me, Et, i-Pr) to the new 9,9-disubstituted derivatives: 9-Me3Si-9-alkyl-DHA.The formation of the carbanion of Me3SiDHA has been investigated and reveals a competition in the abstraction by the base of H9 and H10; the latter is less crowded but the 9-carbanion is stabilized by the vicinity of the silicon atom. The carbanion obtained from Me3SiDHA reacts exclusively at C(9) with D2O. A study of the alkylation of 9-trimethylsilyl-9-deuterio-9,10-dihydroanthracene shows that the generation of the 10-carbanion is followed by a 1,4 hydrogen rearrangement which yields the 9-carbanion. The mechanism is discussed and the roles of Me3Si and t-Bu are compared in the DHA series.  相似文献   

6.
1,2-Bis(trimethylsilyl)-3,4-di(tert-butyl) cyclotetraphosphane cis-P4(SiMe3)2(CMe3)2 1 could be prepared by the reaction of (Me3Si)2P—P(SiMe3)—P(SiMe3)CMe3 2 with (Me3C)PCl2 3 The compound 1 forms pale yellow crystals, m. p. 116°C. The 31P- and 1H-NMR data of 1 are given.  相似文献   

7.
Synthesis, IR Spectrum, and Crystal Structure of N,N'-Bis(trimethylsilyl)benzamidinium Tetrachloroferrate(III) The title compound [C6H5? C(NHSiMe3)2][FeCl4] is obtained by the reaction of FeCl3 with N,N,N'-tris(trimethylsilyl)benzamidine in the presence of tetrahydrofurane, forming yellow, moisture sensitive crystals. The compound is characterized by its IR spectrum as well as by an X-ray structure determination. Space group P21/n, Z = 8, 5974 independent observed reflexions, R = 0.066. The lattice dimensions are at ?70°C: a = 2110.7, b = 1109.5, c = 2120.4 pm; β = 111.17º. The compound forms ion pairs, in which the H atoms of the amidinium cation are coordinated with one chlorine ligand of the FeCl4? ion in a chelating manner.  相似文献   

8.
Synthesis and Characterization of Hetero-bimetallic Bis(trimethylsilyl)phosphanides of Barium and Tin The reaction of barium bis[bis(trimethylsilyl)amide] with one equivalent of bis(trimethylsilyl)phosphane in 1,2-dimethoxyethane (dme) yields the heteroleptic dimeric (dme)barium bis(trimethylsilyl)amide bis(trimethylsilyl)phosphanide. This colorless compound crystallizes in the monoclinic space group P21/n with a = 1 259.1(3), b = 1 822.7(4), c = 1 516.1(3) pm, β = 110.54(3)° and Z = 4. The central moiety of the centrosymmetric molecule is the planar Ba2P2-cycle with Ba? P-bond lengths of 329 and 334 pm. In the presence of bis[bis(trimethylsilyl)amino]stannylene hetero-bimetallic bis(trimethylsilyl)phosphanides of tin(II) and barium are isolated. If the reaction of Ba[N(SiMe3)2]2 and Sn[N(SiMe3)2]2 in the molar ratio of 1:2 with six equivalents of HP(SiMe3)2 is performed in toluene, barium bis{tin(II)-tris[bis(trimethylsilyl)phosphanide]} can be isolated. This compound crystallizes in the orthorhombic space group P212121 with a = 1 265.1(1), b = 2 290.1(3), c = 2 731.9(3) pm and Z = 4. The anions {Sn[P(SiMe3)2]3}? bind as two-dentate ligands to the barium atom which shows the extraordinary low coordination number of four. The addition of tetrahydrofuran (thf) to the above mentioned reaction solution leads to the elimination of tris(trimethylsilyl)phosphane and the formation of thf complexes of barium bis{tin(II)-bis(trimethylsilyl)phosphanide-trimethylsilylphosphandiide}. The derivative crystallizes from toluene in the monoclinic space group P21/c with a = 1 301.9(2), b = 2 316.3(3), c = 3 968.7(5) pm, β = 99.29(1)° and Z = 8.  相似文献   

9.
Trimethylsilyl Derivatives of Vb-Elements. II. Molecular and Crystal Structure of Tetrakis(trimethylsilyl)diarsine Pale yellow tetrakis(trimethylsilyl)diarsine 1 which is easily obtained from lithium bis(trimethylsilyl)arsenide · 2 tetrahydrofurane (THF) and 1,2-dibromoethane crystallizes in a trigonal, acentric space group. The dimensions of the unit cell determined at ?95 ± 5°C are: a = 974.2(2); c = 2 080.0(4) pm; Z = 3. Considering anomalous dispersion the refinement of structural data in space group P3121 converges at an R-value of 0.060, in its enantiomorph P3221, however, at 0.031. With a dihedral angle Si2′? As′? As? Si1 of ?125.7° the molecule adopts gauche conformation. Both bis(trimethylsilyl)arsino groups are symmetry-related by the crystallographic operation of the diad. Characteristic bond lengths and angles are: As? As 245.8(1); As? Si 236.5(1) and 236.2(2) pm; Si? As? Si 100.90(5); As? As? Si 93.87(3) and 113.63(4)°. The shortest intermolecular As? As distance is found to be 662 pm.  相似文献   

10.
tert‐Butyl(dichloromethyl)bis(trimethylsilyl)silane ( 4 ), prepared by the reaction of tert‐butylbis(trimethylsilyl)silane with trichloromethane and potassium tert‐butoxide, reacted with 2,4,6‐triisopropylphenyllithium (TipLi) (molar ratio 1 : 2) at room temperature to give (after hydrolytic workup) the silanol tBu(2,4,6‐iPr3C6H2)Si(OH)–CH(SiMe3)2 ( 15 ). The formation of 15 is discussed as proceeding through the indefinitely stable silene tBu(2,4,6‐iPr3C6H2)Si=C(SiMe3)2 ( 13 ), but attempts to isolate the compound failed. Treatment of (dibromomethyl)ditert‐butyl(trimethylsilyl)silane ( 7 ), made from tBu2(Me3Si)SiH, HCBr3 and KOtBu, with methyllithium (1 : 3) at –78 °C afforded tBu2MeSi–CHMeSiMe3 ( 19 ); 7 and phenyllithium (1 : 3) under similar conditions gave tBu2PhSi–CH2SiMe3 ( 20 ). The reaction paths leading to 15 , 19 and 20 are discussed. Reduction of 7 with lithium in THF produced the substituted ethylene tBu2(Me3Si)SiCH=CHSitBu2SiMe3 ( 21 ). For 21 the results of an X‐ray structural analysis are given.  相似文献   

11.
Zusammenfassung Bis-[bis(trimethylsilyl)amino]-fluorboran (I), Bis-(trimethylsilyl)-amino-dichlorboran (II) und Bis-[bis(trimethylsilyl)-amino]-chlor-boran (III) werden durch Umsetzung von BCl3 und BF3 mit NaN(Sime 3)2 in Äther dargestellt. Alle Verbindungen lassen sich thermisch unter Abspaltung von Trimethylhalogenosilanen kondensieren. Während II zu B-Trichloro-N-tris(trimethylsilyl)-borazol kondensiert, ergeben I und III überraschend ein viergliedriges B–N-Ringsystem.Phenyl-alkoxy-bis(trimethylsilyl)aminoborane gehen ähnliche Kondensationsreaktionen ein.
Bis-[bis(trimethylsilyl)amino]-fluoroborane (I), bis(trimethylsilyl)amino-dichloroborane (II) and bis-[bis-(trimethylsilyl)amino-]chloroborane (III) were synthesized by reaction of BF3 and BCl3 with sodium-bis(trimethylsilyl)-amide. All compounds undergo thermal condensation under elimination of the corresponding trimethylhalosilane. So II forms B-trichloro-N-tris(trimethylsilyl)-borazene, while I and III unexpectedly yield a fourmembered B–N-ring system. Phenyl-alkoxy-bis-(trimethylsilyl)-aminoboranes condense in a similar way to B-phenyl-N-trimethylsilyl-borazene.
  相似文献   

12.
Transsilylation Reaction with Di-tert-butyl(trimethylsilyl)phosphine Di-tert-butyl(trimethylsilyl)phosphine reacts with Dichlordimethylsilane, Trichlor(methyl)silane and silicon tetrachloride with elimination of Chlortrimethylsilane and formation of the new Silylphosphines [( CH3)3C]2PSi(CH3)3?nCln (n = 1, 2, 3). Only the compounds with n = 2 and 3 can be isolated in a pure state. The ir, raman, 1H-n.m.r. and 31P-n.m.r. spectroscopic data of the new compounds are discussed.  相似文献   

13.
Bis(trimethylsilyl)amides and -methanides of Yttrium — Molecular Structures of Tris(diethylether-O)lithium-(μ-chloro)-tris[bis(trimethylsilyl)methyl]yttriate, solvent-free Yttrium Tris[bis(trimethylsilyl)amide] as well as the Bis(benzonitrile) Complex The reaction of yttrium(III) chloride with the three-fold molar amount of LiE(SiMe3)2 (E = N, CH) yields the corresponding yttrium derivatives. Yttrium tris-[bis(trimethylsilyl)amide] crystallizes in the space group P3 1c with a = 1 636,3(2), c = 849,3(2) pm, Z = 2. The yttrium atom is surrounded trigonal pyramidal by three nitrogen atoms with Y? N-bond lengths of 222 pm. Benzene molecules are incorporated parallel to the c-axes. The compound with E = CH crystallizes as a (Et2O)3LiCl-adduct in the monoclinic space group P21/n with a = 1 111,8(2), b = 1 865,2(6), c = 2 598,3(9) pm, β = 97,41(3)° and Z = 4. The reaction of yttrium tris[bis(trimethylsilyl)amide] with benzonitrile yields the bis(benzonitrile) complex, which crystallizes in the triclinic space group P1 with a = 1 173,7(2), b = 1 210,3(2), c = 1 912,4(3) pm, α = 94,37(1), β = 103,39(1), γ = 117,24(1)° and Z = 2. The amido ligands are in equatorial, the benzonitrile molecules in axial positions.  相似文献   

14.
Cycloaddition Reactions of Isocyanides with Bis[tris(trimethylsilyl)methyl]diphosphene The [2 + 1] cycloaddition reactions of isocyanoacetonitrile ( 1 a ), pentacarbonyl(diisocyanomethane)chromium ( 1 b ), and 2,2,2-trifluoroethylisocyanide ( 1 c ) with the diphosphene R–P=P–R (R = C[Si(CH3)3]) ( 2 ) yield the expected diphosphirane imines 3 a – c . All compounds are thermally very stable and show no evidence for a [2 + 1] cycloreversion reaction. The structures of 3 a : triclinic, P 1, a = 918.0(2), b = 1174.7(4), c = 1821.9(5) pm, α = 93.83(2), β = 97.22(2)°, γ = 97.08(2)°, Z = 2, R1 = 0.069; 3 c : monoclinic, P21, a = 928.6(2), b = 1659.8(3), c = 1261.2(3) pm, β = 107.65(2)°, Z = 2, R1 = 0.073, and 1,2-Bis[tris(trimethylsilyl)]methyl-N-trifluormethyl-3-diphosphiranimin: monoclinic, P21/n, a = 1374.6(3), b = 1685.9(1), c = 1658.6(5) pm, β = 108.99(9)°, Z = 4, R1 = 0.092, were elucidated by X-ray crystallography. All three compounds possess a similar three membered PCP ring system with an exocyclic C–N double bond.  相似文献   

15.
Tris(trimethylsilyl)cyanurate, C12H27N3O3Si3 (1), has been synthesized and characterized by elemental analysis, IR, Raman, 13C and 29Si NMR, and thermogravimetric methods. The molecular and crystal structure has been determined by single crystal X-ray diffraction. This compound crystallized in space group P63/m (176), Z = 2 with a = 11.017(2), b = 11.017(2), c = 9.676(3) Å; α = 90°, β = 90°, γ = 120°. The geometry of the molecule is compared with tris(trimethylsilyl)cyamelurate.  相似文献   

16.
One-electron oxidation and one-electron reduction of the electron-rich acetylene derivative, hexakis(trimethylsilyl)-2-butyne [H3C3)3Si]3CCCC[Si(CH3)3]3, unexpectedly produce the persistent radical cation and radical anion of the hitherto unknown neutral compound, tetrakis(trimethylsilyl)butatriene (R3Si)2CCCC(SiR3)2. The radical anion can also be generated from the corresponding diacetylene, bis(trimethylsilyl)-1,3-butadiyne R3SiCCCCSiR3 and potassium metal, obviously via disproportionation. Photoelectron and electron spin resonance spectroscopic data permit the detection and characterization of the individual species. The stability of both the radical anion and the radical cation of the same molecule can be rationalized by the unique combination of the twofold butatriene π-system with 4 R3Si substituents, which can act either as electron donors or electron acceptors and thus stabilize the ground state of either the cation or the anion.  相似文献   

17.
Dimethylgallium-bis(trimethylsilyl)phosphane, Vibrational Spectrum, Force Constants, and X-Ray Structure Dimeric dimethylgallium-bis(trimethylsilyl)phosphane, [Me2Ga? P(SiMe3)2]2, (Me = CH3) is synthesized from Me2GaCl and P(SiMe3)3 in hot toluene. The compound crystallizes in the triclinic space group P1 with the cell parameters a = 909.8(2), b = 960.5(2), c = 971.6(2) pm; α = 76.75(1)°, β = 80.35(1)°, γ = 63.94(1)° and Z = 1 (dimer). The Ga? P distances are 244.8 and 245.2 pm, the ring angles are 91.8° (Ga? P? Ga) and 88.2° (P? Ga? P), respectively. The vibrational spectrum (IR and Raman for the solid) has been measured and assigned; force constants calculations are carried out for the skeleton [C2Ga? P(SiC3)2]2 using Fleischhauers [26] PC-program.  相似文献   

18.
Crystal Structure of Bis[lithium-tris(trimethylsilyl)hydrazide] and Reactions with Fluoroboranes, -silanes, and -phospanes Tris(trimethylsilyl)hydrazine reacts with n-butyllithium in n-hexane to give the lithium-derivative 1 . The reaction of 1 with SiF4, PhSiF3, BF3 · OEt2, F2BN(SiMe3)2 and PF3 leads to the substitution products 2–6 . The 1,2-diaza-3-bora-5-silacyclopentane 7 is formed by heating (Me3Si)2N? N(SiMe3)(BFNSiMe3)2 ( 5 ) at 250°C. In the reaction of (Me3Si)2N? N(SiMe3)PF2 ( 6 ) with lithiated tert.-butyl(trimethylsilyl)amine the hydrazino-iminophosphene (Me3Si)2N? N = P? N(SiMe3)(CMe3) ( 8 ) is obtained. In the molar ratio 2:1 1 reacts with SiF4 and BF3 · OEt2 to give bis[tris(trimethylsilyl)hydrazino]silane 9 and -borane 10 .  相似文献   

19.
The polymerization of 1,2‐disubstituted acetylenes [1‐(trimethylgermyl)‐1‐propyne and 1‐(trimethylsilyl)‐1‐propyne] initiated by Nb‐ and Ta‐based catalytic systems was studied within a wide temperature range (?10 to +80 °C) with solvents (cyclohexane, CCl4, toluene, anisol, and n‐chlorobutane) with variable dielectric constants (2.023–7.390). Conditions ensuring the synthesis of poly[1‐(trimethylsilyl)‐1‐propyne] (PTMSP) containing 20–80% cis units and poly[1‐(trimethylgermyl)‐1‐propyne] (PTMGP) containing 3–65% cis units were determined. The PTMSP and PTMGP samples were amorphous, exhibited a two‐phase structure characterized by the presence of less ordered regions and regions with an enhanced level of ordering, and differed in solubility. A correlation was found between the cis/trans ratio and the morphology, the geometrical density of PTMSP and PTMGP films, and the gas permeability of the polymers. The gas permeability and solubility behavior of PTMSP and PTMGP were examined in terms of the molecular characteristics of the polymer samples (the thermodynamic Kuhn segment and the Kerr electrooptic effect). It was demonstrated that the gas permeability, as well as the solubility of the polymers, was defined by their supramolecular ordering, which depended on the lengths of continuous sequences composed of units of analogous microstructures and on the flexibility of macrochains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2133–2155, 2003  相似文献   

20.
Trimethylsilyl Derivatives of Vb Elements. VII. Crystal Structures of Lithium Bis(trimethylsilyl)bismuthide · DME and of Tetrakis(trimethylsilyl)dibismuthane as well as Some Comments on the Crystal Structure of Bis(4-methoxyphenyl)ditellane Colourless lithium bis(trimethylsilyl)bismuthide · DME
  • 1 1,2-Dimethoxyethan (DME); Tetrahydrofuran (THF)
  • 1 and green, metallic lustrous tetrakis(trimethylsilyl)dibismuthane 2 crystallize isotopic to their antimony homologues [1, 2]. As it is shown by crystal structure determinations { 1 : ?90°C; I 4 2d; a = 1017,3(4); c = 3738,0(26) pm; Z = 8; R w = 0,065; 2 : + 20°C; P2 1 /c; a = 680,9(4); b = 1704,8(13); c = 1197,9 (10) pm; β = 119,46(6)°; Z = 2; R w = 0,084} both compounds form chains which in the case of bismuthide 1 are built up as screws of alternating bismuth and lithium atoms; bonding further to two trimethylsilyl groups or to the chelating DME ligand both atoms gain coordination number 4 {Li? Bi 292(3); Bi? Si 263.3(14) pm; Bi? Li? Bi 132(1); Li? Bi? Li 148(1); φ(Li? Bi? Li? Bi) 83°}. In the case of dibismuthane 2 the centrosymmetric molecules are strung, their Bi-Bi groups forming nearly linear zigzag chains with shortened intermolecular contact distances {Bi-Bi 303.5(3); Bi …? Bi 380.4(3); Bi? Si 268 pm; Bi? Bi …? Bi 169; Bi? Bi? Si 97.4(5) and 92.0(5)°}. Structure and properties of 2 are compared with those of similar compounds; the crystal structure of brown, green metallic lustrous bis(4-methoxyphenyl)ditellane 5 already published by Ludlow and McCarthy[3] is reinvestigated with respect to very short intermolecular Te…?Te contacts.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号