首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometries, stabilities, electronic properties, and magnetism of FeB(n) clusters up to n=10 are systematically studied with density functional theory. We find that our optimized structures of FeB(2), FeB(3), FeB(4), and FeB(5) clusters are more stable than those proposed in previous literature. The results show that it is favorable for the Fe atom to locate at the surface, not at the center of the cluster, and that FeB(4) and FeB(9) clusters exhibit high stability. For all the FeB(n) clusters studied, we find the charge transfer from Fe to B site and the coexistence of ionic and covalent bonding characteristics. The computed total magnetic moments of the lowest-energy structures oscillate with the cluster size and are quenched at n=4, 6, 8, and 10.  相似文献   

2.
The structure and harmonic vibrations of Ga(n)N(n) (n = 3-10) clusters have been investigated using the B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional theory. All structures are found to be cumulenic D(nh) rings (equal bonds, alternating angles), with one intense out of plane mode and three infrared-active degenerate modes, of which the highest one is extremely intense and asymptotically increases to 1029 cm(-1) for n = 10. Comparisons with C2n, B(n)N(n), and Al(n)N(n) clusters, the structure and bonding type for the Ga(n)N(n) (n=3-10) clusters are consistent with those of the C2n (n = 3, 5, 7, ...) clusters, the B(n)N(n) (n = 3-10), and Al(n)N(n) (n = 3-9) clusters.  相似文献   

3.
Zinc sulfide clusters produced by direct laser ablation and analyzed in a time-of-flight mass-spectrometer, showed evidence that clusters composed of 3, 6, and 13 monomer units were ultrastable. The geometry and energies of neutral and positively charged Zn(n)S(n) clusters, up to n = 16, were obtained computationally at the B3LYP/6-311+G level of theory with the assistance of an algorithm to generate all possible structures having predefined constraints. Small neutral and positive clusters were found to have planar geometries, neutral three-dimensional clusters have the geometry of closed-cage polyhedra, and cationic three-dimensional clusters have structures with a pair of two-coordinated atoms. Physical properties of the clusters as a function of size are reported. The relative stability of the positive stoichiometric clusters provides a thermodynamic rationale for the experimental results.  相似文献   

4.
Photoelectron spectroscopy has been conducted for a series of (CrO3)n(-) (n = 1-5) clusters and compared with density functional calculations. Well-resolved photoelectron spectra were obtained for (CrO3)n(-) (n = 1-5) at 193 nm (6.424 eV) and 157 nm (7.866 eV) photon energies, allowing for accurate measurements of the electron binding energies, low-lying electronic excitations for n = 1 and 2, and the energy gaps. Density functional and molecular orbital theory (CCSD(T)) calculations were performed to locate the ground and low-lying excited states for the neutral clusters and to calculate the electron binding energies of the anionic species. The experimental and computational studies firmly establish the unique low-spin, nonplanar, cyclic ring structures for (CrO3)n and (CrO3)n(-) for n > or = 3. The structural parameters of (CrO3)n are shown to converge rapidly to those of the bulk CrO3 crystal. The extra electron in (CrO3)n(-) (n > or = 2) is shown to be largely delocalized over all Cr centers, in accord with the relatively sharp ground-state photoelectron bands. The measured energy gaps of (CrO3)n exhibit a sharp increase from n = 1 to n = 3 and approach to the bulk value of 2.25 eV at n = 4 and 5, consistent with the convergence of the structural parameters.  相似文献   

5.
A comparative study of the adsorption of an O2 molecule on pure Au(n+1)+ and doped MAu(n)+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based on norm-conserving pseudo-potentials and numerical basis sets. For pure Au4 +, Au6+, and Au7+ clusters, the O2 molecule is adsorbed preferably on top of low coordinated Au atoms, with an adsorption energy smaller than 0.5 eV. Instead, for Au5+ and Au8+, bridge adsorption sites are preferred with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au(n)+ is almost unperturbed after O2 adsorption. The electronic charge flows towards O2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O2 is adsorbed on top of Au atoms, and both the adsorption energy and the O-O bond length of adsorbed oxygen increase when the amount of electronic charge on O2 increases. On the other hand, we studied the adsorption of an O2 molecule on doped MAu(n)+ clusters, leading to the formation of (MAu(n)O2+) ad complexes with different equilibrium configurations. The highest adsorption energy was obtained when both atoms of O2 bind on top of the M impurity, and it is larger for Ti doped clusters than for Fe doped clusters, showing an odd-even effect trend with size n, which is opposite for Ti as compared to Fe complexes. For those adsorption configurations of (MAu(n)O2+) ad involving only Au sites, the adsorption energy is similar to or smaller than that for similar configurations of Au(n)+1O2 + complexes. However, the highest adsorption energy of (MAu(n)O2+) ad is higher than that for (Au(n)+1O2+) ad by a factor of approximately 4.0 (1.2) for M = Ti (M = Fe). The trends with size n are rationalized in terms of O-O and O-M bond distances, as well as charge transfer between oxygen and cluster substrates. The spin multiplicity of those (MAu(n)O2+) ad complexes with the highest O2 adsorption energy is a maximum (minimum) for M = Fe (Ti), corresponding to parallel (anti-parallel) spin coupling of MAu(n)+ clusters and O2 molecules. Finally, we obtained the minimum energy equilibrium structure of complexes (Au(n)O2+) dis and (MAu(n)O2+) dis containing two separated O atoms bonded at different sites of Au(n)+ and MAu(n)+ clusters, respectively. For (MAu(n)O2 (+)) dis, the equilibrium configuration with the highest adsorption energy is stable against separation in MAu(n)+ and O2 fragments, respectively. Instead, for (Au(n)O2+) dis, only the complex n = 6 is stable against separation in Au(n)+ and O2 fragments. The maximum separation energy of (MAu(n)O2+) dis is higher than the O2 adsorption energy of (MAu(n)O2+) ad complexes by factors of approximately 1.6 (2.5), 1.6 (1.7), 1.5 (2.4), 1.5 (1.3), and 1.6 (1.8) for M = Ti (Fe) complexes in the range n = 3-7, respectively.  相似文献   

6.
The kinetic-energy-dependent cross sections for the reactions of Co(n)+ (n = 2-16) with D2 are measured as a function of kinetic energy over a range of 0-8 eV in a guided ion-beam tandem mass spectrometer. The observed products are Co(n) D+ for all clusters and Co(n)D2+ for n = 4,5,9-16. Reactions for the formation of Co(n)D+ (n = 2-16) and Co9D2+ are observed to exhibit thresholds, whereas cross sections for the formation of Co(n)D2+ (n = 4,5,10-16) exhibit exothermic reaction behavior. The Co(n)+-D bond energies as a function of cluster size are derived from the threshold analysis of the kinetic-energy dependence of the endothermic reactions and are compared to previously determined metal-metal bond energies, D0(Co(n)+-Co). The bond energies of Co(n)+-D generally increase as the cluster size increases, and roughly parallel those for Co(n)+-Co for clusters n > or = 4. These trends are explained in terms of electronic and geometric structures for the Co(n)+ clusters. The bond energies of Co(n)+-D for larger clusters (n > or = 10) are found to be very close to the value for chemisorption of atomic hydrogen on bulk-phase cobalt. The rate constants for D2 chemisorption on the cationic clusters are compared with the results from previous work on cationic and neutral cobalt clusters.  相似文献   

7.
Several tellurometalates of the general formula [MTe(7)](n)()(-) (n = 2, 3) have been isolated as salts of organic cations by reaction of suitable metal sources with polytelluride solutions in DMF. The [HgTe(7)](2)(-) anion has the same structure in both the NEt(4)(+) and the PPh(4)(+) salts except for a minor change in the ligand conformation. The [AgTe(7)](3)(-) and [HgTe(7)](2)(-) anions contain metal atoms coordinated in trigonal-planar fashion to eta(3)-Te(7)(4)(-) ligands. The central Te atom of an eta(3)-Te(7)(4)(-) ligand is coordinated to the metal atom and to two Te atoms in a "T"-shaped geometry consistent with a hypervalent 10 e(-) center. The planar [AuTe(7)](3)(-) anion may best be described as possessing a square-planar Au(III) atom coordinated to an eta(3)-Te(5)(4)(-) ligand and to an eta(1)-Te(2)(2)(-) ligand. The reaction of [NEt(4)](n)()[MTe(7)] (M = Hg, n = 2; M = Au, n = 3) with the activated acetylene dimethyl acetylenedicarboxylate (DMAD) has yielded the products [NEt(4)](n)()[M(Te(2)C(2)(COOCH(3))(2))(2)] (M = Hg, n = 2; M = Au, n = 1). The metal atoms are coordinated to two Te(COOCH(3))C=C(COOCH(3))Te(2)(-) ligands, for M = Hg in a distorted tetrahedral fashion and for M = Au in a square-planar fashion.  相似文献   

8.
The structures and stabilities of gitonic and distonic alkanonium dications, i.e., diprotonated alkane dications C(n)H(2n+4)(2+) (n = 1-4), were investigated at the MP4(SDTQ)/6-311G**//MP2/6-31G** level. The global minimum energy structures (2, 4, 7, and 10) of the C(n)H(2n+4)(2+) dications are double C--H protonated alkanes to give structures with two two electron three-center (2e-3c) bonds. Two different dissociation pathways for the dications, viz deprotonation and demethylation, were also computed. Demethylation was found to be the favorable mode of dissociation.  相似文献   

9.
We performed an unbiased search for low-energy structures of medium-sized neutral Si n and Ge n clusters ( n = 25-33) using a genetic algorithm (GA) coupled with tight-binding interatomic potentials. Structural candidates obtained from our GA search were further optimized by first-principles calculations using density functional theory (DFT). Our approach reproduces well the lowest-energy structures of Si n and Ge n clusters of n = 25-29 compared to previous studies, showing the accuracy and reliability of our approach. In the present study, we pay more attention to determine low-lying isomers of Si n and Ge n ( n = 29-33) and study the growth patterns of these clusters. The B3LYP calculations suggest that the growth pattern of Si n ( n = 25-33) clusters undergoes a transition from prolate to cage at n = 31, while this transition appears at n = 26 from the PBE-calculated results. In the size range of 25-33, the corresponding Ge n clusters hold the prolate growth pattern. The relative stabilities and different structural motifs of Si n and Ge n ( n = 25-33) clusters were studied, and the changes of small cluster structures, when acting as building blocks of large clusters, were also discussed.  相似文献   

10.
Following our recent work which revealed that the lowest-energy structures of (ZnO)n (n=9-18) follow cage and tube structural growth patterns with stacks of small subunits of (ZnO)2 and (ZnO)3 [Wang et al., J. Phys. Chem. C 111, 4956 (2007)], we have extended the search for the most stable structures to some larger clusters, i.e., (ZnO)n (n=24, 28, 36, and 48) by using gradient-corrected density-functional theory (DFT). A number of starting configurations belonging to different structural motifs were generated from handmade constructions with chemical intuition and then optimized via DFT calculations. Within the size range studied, cage and tube structures were found to be the most preferred structural motifs for the (ZnO)n clusters.  相似文献   

11.
Time-resolved photoelectron imaging has been used to study the relaxation dynamics of small Hg(n) (-) clusters (n=7-13,15,18) following intraband electronic excitation at 1250 nm (1.0 eV). This study furthers our previous investigation of single electron, intraband relaxation dynamics in Hg(n) (-) clusters at 790 nm by exploring the dynamics of smaller clusters (n=7-10), as well as those of larger clusters (n=11-13,15,18) at a lower excitation energy. We measure relaxation time scales of 2-9 ps, two to three times faster than seen previously after 790 nm excitation of Hg(n) (-), n=11-18. These results, along with size-dependent trends in the absorption cross-section and photoelectron angular distribution anisotropy, suggest significant evolution of the cluster anion electronic structure in the size range studied here. Furthermore, the smallest clusters studied here exhibit 35-45 cm(-1) oscillations in pump-probe signal at earliest temporal delays that are interpreted as early coherent nuclear motion on the excited potential energy surfaces of these clusters. Evidence for evaporation of one or two Hg atoms is seen on a time scale of tens of picoseconds.  相似文献   

12.
The reaction of 4'-(2-propyn-1-oxy)-2,2':6',2'-terpyridine (HC[triple bond]CCH2Oterpy) with trans-[PtI2(PR3)2] (R = Et, (n)Bu, Ph) results in the regioselective formation of the metalloditopic ligands trans-[Pt(C[triple bond]CCH2Oterpy)2(PR3)2], crystallographic data for which are presented. Each ditopic ligand reacts with FeCl(2).4H(2)O to give heterometallomacrocycles, the smallest of which is a [2 + 2] macrocycle, confirmed structurally for R = Et. The NMR spectroscopic data confirm the formation of symmetrical species, i.e. macrocyclic and not polymeric species. The distribution of products has been investigated using pulsed-field gradient spin-echo (PGSE) diffusion NMR spectroscopy, and indicates that the kinetic products from the reactions of 1, 2 or 3(L) with iron(II) are [Fe(n)L(n)](2n+) with n = 2, 3 or 4. For L = 1 and 2, these mixtures of products convert in solution to the thermodynamically favoured [Fe(2)L(2)](4+).  相似文献   

13.
Using a cluster model, we investigated the similarities and differences in chemical activity and the magnetic properties of Sc(n) clusters (n = 2-13) and their oxides, Sc(n)O, toward CO molecule adsorption via a spin-polarized density functional theory approach. The Sc(n) and Sc(n)O clusters have similar chemical activity at small sizes of n = 2-10, whereas remarkable differences are observed at large sizes of n = 11-13. More interestingly, different magnetic responses are found in the Sc(n) and Sc(n)O clusters with the presence of CO molecule: The magnetic moment is attenuated significantly for Sc(n) with n = 2, 4, 12, and 13, whereas for Sc(n)O, it is enhanced at n = 4 and 13 and is reduced for n = 7, 8, 10, and 11. In particular, the magnetic moment remarkably increases from 7 μ(B) of Sc(13)O to 13 μ(B) of Sc(13)OCO, whereas it reduces from 19 μ(B) of Sc(13) to 5 μ(B) of Sc(13)CO.  相似文献   

14.
运用HF/3-21G方法和密度泛函理论(DFT)的B3LYP/6-31G*方法, 对羰基硼化合物(BCO)n(n=1~12)的各种可能结构进行了优化, 对在B3LYP/6-31G*水平上得到的几何构型、电子态、结合能、振动频率、核独立化学位移(NICS)、能量二次差分和热力学性质进行了理论研究, 得到了(BCO)n(n=1~12)结构的稳定性信息. 十二种基态结构都是端配位(μ1-CO), (BCO)n(n=1~3, 5, 6) 的基态是线型或平面结构, (BCO)n(n=4, 7~12)的基态是笼状结构; B—C平均键能呈现奇偶交替现象, 偶数的结构比奇数稳定; 能量二次差分得到同样的结论;羰基的振动频率与实验值非常吻合; 热力学性质的研究对实验具有重要的指导意义.  相似文献   

15.
The size-selective Zr(2)Si(n) (n = 16-24) caged clusters have been investigated by density functional approach in detail. Their geometries, relative stabilities, electronic properties and ionization potentials have been discussed. The dominant structures of bimetallic Zr(2) doped silicon caged clusters gradually transform to Zr(2) totally encapsulated structures with increase of the clustered size from 16 to 24, which is good agreement with the recent experimental result (J. Phys. Chem. A. 2007, 111, 42). Two novel isomers, i.e., naphthalene-like and dodecahedral Zr(2)Si(20) clusters, are found as low-lying conformers. Furthermore, the novel quasi-1D naphthalene-like Zr(n)Si(m) nanotubes are first reported. The second-order energy differences reveal that magic numbers of the different sized neutral Zr(2)Si(n) clusters appear at n = 18, 20 and 22, which are attributed to the fullerene-like, dodecahedral and polyhedral structures, respectively. The HOMO-LUMO gaps (>1 eV) of all the size-selective Zr(2)Si(n) clusters suggest that encapsulation of the bimetallic zirconium atoms is favorable for increasing the stabilities of silicon cages.  相似文献   

16.
Density functional theory involving generalized gradient approximation correlation functional is used to investigate the cluster series La @Si n (n=1-21). We find that the growth process of La @Si n (n=1-21) could be divided into three stages: First, La atom adheres to other Si atoms in the size range of 1相似文献   

17.
Wei F  Liu SM  Xu L  Cheng GZ  Wu CT  Feng YQ 《Electrophoresis》2005,26(11):2214-2224
For analytes involved in dynamic equilibrium processes, capillary electrophoresis is a powerful method of determining binding constants. In this work, the complex formation between cucurbit[n]uril (CB[n] n = 6, 7) and some amino compounds was studied by capillary electrophoresis in aqueous formic acid (65% v/v). Four groups of positional and structural isomers (o, m, p-methylanilines; m, p-nitroanilines; benzidine and o-tolidine; alpha, beta-naphthylamines and 1,5-diaminonaphthalene) were selected as model compounds for study of their host-guest inclusion complexation. The interactions between CB[n] (n = 6, 7) and the model compounds were also investigated using a molecular modeling method. The results indicate that the interactions of the compounds with CB[n] (n = 6, 7) are strongly affected by the position of the substituent(s) on the aromatic ring and the ion-dipole interaction between guest molecule and CB. Furthermore, the type and the concentration of CBs on the separation and migration behavior of the amino compounds were also studied.  相似文献   

18.
The drum-like C4nNn (n = 3-8) cages and corresponding hydrogenated products C4n H4nN2n (n = 3-8) are studied at the DFT B3LYP/6-31G** level. Their structures, energies, and vibrational frequencies have been investigated. Comparison of heat of formation reveals that C32N16 with D8h symmetry in the C4nN2n (n = 3-8) series is a promising candidate as high energy density matter. The calculation of the DeltaG and DeltaH for the hydrogenation of C4nN2n (n = 3-8) shows that it is an exothermic reaction at 298 K and the C4nH4nN2n (n = 3-8) species are more stable than C4nN2n (n = 3-8) species. The analysis of molecular orbital and selected bond lengths of N-N and C-C provides another insight about their stability. Combined with the nucleus-independent chemical shifts (NICS) calculation, it is indicated that molecular stability for cage-shaped molecules depends on not only aromatic character but also the cage effect.  相似文献   

19.
The ground-state structures of neutral, cationic, and anionic phosphorus clusters P(n), P(n)(+), and P(n)(-) (n = 3-15) have been calculated using the B3LYP/6-311+G* density functional method. The P(n)(+) and P(n)(-) (n = 3-15) clusters with odd n were found to be more stable than those with even n, and we provide a satisfactory explanation for such trends based on concepts of energy difference, ionization potential, electron affinity, and incremental binding energy. The result of odd/even alternations is in good accord with the relative intensities of cationic and anionic phosphorus clusters observed in mass spectrometric studies.  相似文献   

20.
Sector-field mass spectrometry is used to probe the fragmentation patterns of cationic dinuclear iron chloride clusters Fe(2)Cl(n)()(+) (n = 1-6). For the chlorine-rich, high-valent Fe(2)Cl(n)()(+) ions (n = 4-6), losses of atomic and molecular chlorine prevail in the unimolecular and collision-induced dissociation patterns. Instead, the chlorine deficient, formally low-valent Fe(2)Cl(n)()(+) clusters (n = 1-3) preferentially undergo unimolecular degradation to mononuclear FeCl(m)()(+) ions. In addition, photoionization is used to determine IE(Fe(2)Cl(6)) = 10.85 +/- 0.05 eV along with appearance energy measurements for the production of Fe(2)Cl(5)(+) and Fe(2)Cl(4)(+) cations from iron(III) chloride vapor. The combination of the experimental results allows an evaluation of some of the thermochemical properties of the dinuclear Fe(2)Cl(n)()(+) cations: e.g., Delta(f)H(Fe(2)Cl(+)) = 232 +/- 15 kcal/mol, Delta(f)H(Fe(2)Cl(2)(+)) = 167 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(3)(+)) = 139 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(4)(+)) = 113 +/- 4 kcal/mol, Delta(f)H(Fe(2)Cl(5)(+)) = 79 +/- 5 kcal/mol, and Delta(f)H(Fe(2)Cl(6)(+)) = 93 +/- 2 kcal/mol. The analysis of the data suggests that structural effects are more important than the formal valency of iron as far as the Fe-Cl bond strengths in the Fe(2)Cl(n)()(+) ions are concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号