首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The paper proposes a method to allow for the stress mode in analyzing the thermoelastoplastic stress-strain state of compound bodies of revolution under asymmetric loading and heating. Use is made of a semianalytic finite-element method and the method of successive approximations. Some numerical results are presented Translated from Prikladnaya Mekhanika, Vol. 44, No. 9, pp. 26–35, September 2008.  相似文献   

2.
The paper sets forth a method of successive approximations along loading paths. The method is used to determine the thermoelastoplastic stress–strain state of laminated shells under axisymmetric complex loading. Deformation-type constitutive equations describing loading along arbitrary plane paths are employed. A numerical example is presented  相似文献   

3.
The paper presents a technique for thermoelastoplastic stress–strain analysis of flexible laminated shells of revolution under complex axisymmetric loading. The constitutive deformation equations are used to describe loading along arbitrary plane paths. The problem is solved by the method of successive approximations. A numerical example is given  相似文献   

4.
A method is proposed for the numerical analysis of the thermoelastoplastic stress-strain state of laminated shells of revolution, made of isotropic and orthotropic materials, under axisymmetric loading. The method is based on the Kirchhoff-Love hypotheses for a layer stack, the theory of deformation along paths of small curvature for isotropic materials, and Hills theory of flow with isotropic hardening for orthotropic materials. The problem is solved by the method of successive approximations. A numerical example is given.__________Translated from Prikladnaya Mekhanika, Vol. 40, No. 12, pp. 84–91, December 2004.  相似文献   

5.
A technique for nonaxisymmetric thermoelastoplastic stress–strain analysis of laminated shells of revolution is developed. It is assumed that there is no slippage and the layers are not separated. The problem is solved using the geometrically linear theory of shells based on the Kirchhoff–Love hypotheses. The thermoplastic relations are written down in the form of the method of elastic solutions. The order of the system of partial differential equations obtained is reduced by means of trigonometric series in the circumferential coordinate. The systems of ordinary differential equations thus obtained are solved by Godunov's discrete-orthogonalization method. The nonaxisymmetric thermoelastoplastic stress–strain state of a two-layered shell is analyzed as an example  相似文献   

6.
A technique for analysis of the nonaxisymmetric thermoelastoplastic stress-strain state of laminated circular cylindrical shells is developed. It is assumed that the layers in a laminated package do not slip and separate relative to each other. The problem is solved using the geometrically linear theory of shells that is based on the Kirchhoff-Love hypotheses. The equations of thermoplasticity are written in the form of the method of additional strains. The order of the obtained system of partial differential equations is reduced with the help of trigonometric series in the cyclic coordinate. The systems of ordinary differential equations thus obtained are solved by Godunov's method of discrete orthogonalization. As an example, the nonaxisymmetric thermoelastoplastic stress-strain state of a two-layer cylindrical shell is considered. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 2, pp. 105–110, February, 2000.  相似文献   

7.
A technique is developed for determination of the axisymmetric thermoelastoplastic stress-strain state of branched laminated transversally isotropic shells of revolution under loads that cause the meridional stress state and torsion. The method is based on the rectilinear-element hypotheses for the whole package of layers. To describe the processes of active elastoplastic deformation of a transversally isotropic material, deformation-type equations, which are constructed without recourse to the plastic-potential existence condition, are used. The scalar functions in the constitutive equations depend on the shear-strain rate and temperature. The solution of the problem is reduced to numerical integration of systems of differential equations. An example of determination of the elastoplastic state of a two-layer cylindrical shell stiffened with a rigid ring support is presented. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 4, pp. 125–131, April, 2000.  相似文献   

8.
In order to solve the coupled thermoelastoplastic problems by the finite element method it is necessary to establish suitable functional. In this paper, based on the thermoelastoplastic constitutive relation proposed by K.N. Rysinko and E.I. Blinov, the functional of coupled thermoelastoplasticity is derived by means of the nonlinear functional analysis theory.Project Supported by National Science Foundation of China.  相似文献   

9.
A technique is proposed to allow for deformation damage of cylindrically orthotropic elastic materials in a thermoelastoplastic stress–strain analysis of composite bodies of revolution under nonaxisymmetric loading and heating  相似文献   

10.
This paper deals with a numerical formulation for coupled thermoplastic problems including phase-change phenomena. The final goal is to get an accurate, efficient and robust numerical model, allowing the numerical simulation of solidification processes in the metal casting industry. Some of the current issues addressed in the paper are the following. A fractional step method arising from an operator split of the governing differential equations has been used to solve the nonlinear coupled system of equations, leading to a staggered product formula solution algorithm. Nonlinear stability issues are discussed and isentropic and isothermal operator splits are formulated. Within the isentropic split, a strong operator split design constraint is introduced, by requiring that the elastic and plastic entropy, as well as the phase-change induced elastic entropy due to the latent heat, remain fixed in the mechanical problem. The formulation of the model has been consistently derived within a thermodynamic framework. The constitutive behavior has been defined by a thermoelastoplastic free energy function, including a thermal multiphase change contribution. Plastic response has been modeled by a J2 temperature dependent model, including plastic hardening and thermal softening. A brief summary of the thermomechanical frictional contact model is included. The numerical model has been implemented into the computational Finite Element code COMET developed by the authors. A numerical assessment of the isentropic and isothermal operator splits, regarding the nonlinear stability behavior, has been performed for weakly and strongly coupled thermomechanical problems. Numerical simulations of solidification processes show the performance of the computational model developed.  相似文献   

11.
A thermoelastoplastic analysis is made to study the surface waviness of orthogonal machine cutting. As a workpiece experiences heavy cutting, chips are formed incrementally in a steady fashion leaving a sinusoidal wavy surface as evidence of the varying thickness of the uncut chips. The finite difference method is applied to determine the temperature distribution in the chip and tool while a large deformation thermoelastoplastic finite element analysis is made to simulate the wave removing process whereby the wavy surface is modelled by saw-tooth shaped meshes. Determined are the chip geometry, residual stresses in the machined surface, temperature distributions in the chip and tool forces. The cutting forces are also calculated and they agree well with the test results.  相似文献   

12.
A procedure is proposed to numerically study the thermoelastoplastic axisymmetric stress–strain state of laminated flexible shells exposed to radiation. The equations of thermoradiation plasticity describing simple processes are used. Results of an analysis of the elastoplastic state of a three-layer shell with regard for radiation effects are presented  相似文献   

13.
The equations describing thermoelastoplastic deformation along nonstraight paths and taking into account the third invariant of the stress deviator are experimentally validated. The equations contain two scalar functions that are specified in base tests on tubular specimens. The test data are tabulated. The values of the scalar functions for strains, temperature, and stress mode are found by using nonlinear interpolation of the data and the temperature similarity of the functions. The stresses in elements of the body are calculated from given strains by the method of successive approximations  相似文献   

14.
An analysis based on the incremental strain theory is formulated for solving the problem of an elastoplastic hollow sphere subjected to a transient temperature distribution. Thermal and material properties are assumed to be temperature dependent and the behaviour of the medium to be characterized by the Ramberg-Osgood stress-strain relation. A method of successive elastic solutions is used to obtain a numerical solution. An illustrative example shows that the effective stress is not a monotonie function of the radius, but is much dependent on the history, gradient, and distribution of the temperature in the hollow sphere. In addition, unloading in the plastically deformed region is confirmed from the detailed discussion on the distribution of strains. As a result, the analysis based on the total strain theory is not permissible for solving this kind of elastoplastic problems subjected to transient thermal loading. In the following analysis the problem is treated in a quasi-static sense and the inertia terms in the thermoelastoplastic equations are neglected.  相似文献   

15.
A method is proposed for determining the thermoelastoplastic stress–strain state of laminated shells of revolution, made of isotropic and transversely isotropic materials, under axisymmetric loading. The method is based on the Kirchhoff–Love hypotheses for a layer stack, the theory of deformation along paths of small curvature for isotropic materials, and Hill's flow theory with isotropic hardening for transversely isotropic materials. The loading history is accounted for. The problem is solved by the method of successive approximations. Numerical examples are given  相似文献   

16.
The thermomechanical behavior of casting sands is discussed from an experimental and a theoretical point of view. Uniaxial compression tests at temperatures ranging from 20°C to 950°C and at different values of strain rate (ϵ = 10−2 s−1, ϵ = 10−3 s−1 and ϵ = 10−4 s−1) have been performed. They show that casting sands exhibit no strain rate effect in the temperature range 20–600°C, and that an elastoplastic model is well suited to describe the experimental results. Three thermoelastoplastic models, derived from Cam Clay and Hujeux models have been developed. These new models take into account the cohesion of the material. The physical parameters needed for these models have been obtained in the temperature range 20–300°C by using triaxial tests, uniaxial compression tests, isotropic compression tests and die pressing tests. An original triaxial apparatus has been built allowing a temperature of 800°C and a pressure of 4 MPa to be reached. In the temperature at which the parameters have been obtained (20–300°C), two additional triaxial compression tests at different confining pressures are used to check the validity of the thermoelastoplastic models used. The best quantitative results are obtained with the revised modified Cam Clay model.  相似文献   

17.
A method to determine the nonstationary temperature fields and the thermoelastoplastic stress-strain state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical properties are dependent on temperature. The heat-conduction problem is solved using an explicit difference scheme. The temperature variation throughout the thickness is described by a power polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. The theory of simple processes with deformation history taken into account is used. Its equations are linearized by a modified method of elastic solutions. The governing system of partial differential equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The partial case where the stress-strain state does not change along the generatrix is examined. The systems of ordinary differential equations obtained in all these cases are solved using Godunov's discrete orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The stress-strain state found by numerical integration along the generatrix is compared with that obtained using trigonometric Fourier series. The effect of a Winkler foundation on the stress-strain state is analyzed Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 79–90, August 2008.  相似文献   

18.
Unequal frictional conditions between the dies and a long circular cylinder are analyzed using a thermoelastoplastic formulation. The flow stress in the cylinder is assumed to depend on the strain, strain rate and temperature. Non-symmetrical contact loads across the cylinder cause uneven pressing and material flow. Plane strain analytical results are obtained and they agree with the observations of the side pressing tests.  相似文献   

19.
The thermoelastoplastic fracture mechanics problem of a thick-walled cylinder subjected to internal pressure and a nonuniform temperature field is solved by the method of elastic solutions combined with the finite-element method. The correctness of the solution is provided by using the Barenblatt crack model, in which the stress and strain fields are regular. The elastoplastic problem of a cracked cylinder subjected to internal pressure and a nonuniform temperature field are solved. The calculation results are compared with available data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 173–183, May–June, 2008.  相似文献   

20.
The method of successive approximations is used to determine the thermoelastoplastic stress-strain state of isotropic and transversally isotropic laminated shells of revolution under axisymmetric loading. Hill’s theory of plasticity with isotropic hardening is used to describe the deformation of transversely isotropic materials, while the theory of deformation along paths of small curvature is used to describe the deformation of isotropic materials. The elastoplastic stress-strain state of a two-layer cylindrical shell under mechanical and thermal loads is analyzed __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 6, pp. 71–80, June 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号