首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the bioactive component harpagoside and angroside C in the root of Scrophularia ningpoensis Hemsley was simultaneously separated by high‐speed counter‐current chromatography (HSCCC). A two‐phase solvent system containing chloroform/n‐butanol/methanol/water (4:1:3:2, v/v/v/v) was selected following consideration of the partition coefficient of the target compound. The crude extract (200 mg) was loaded onto a 280‐mL HSCCC column and yielded 22 mg harpagoside and 31 mg angroside C with the purity of higher than 98 and 98.5%, respectively. It is feasible to isolate active compounds harpagoside and angroside C from S. ningpoensis using HSCCC.  相似文献   

2.
Extraction is the most important step in the purification of bioactive compounds from natural products. This study introduces a simple online extraction strategy coupled with high‐speed counter‐current chromatography for efficient extraction and purification of bioactive components from solid natural products. For online extraction strategy, 1.0 g of ground Mangnolia officinalis or Piper nigrum was loaded into a guard column, which was then positioned on the manual injection valve instead of the sample loop. Bioactive components were directly extracted by the mobile phase of high‐speed counter‐current chromatography, and then transferred into high‐speed counter‐current chromatography for purification. In addition, the compatibility of the developed methodology for direct purification of bioactive components from fresh M. officinalis was successfully demonstrated. Obviously, in comparison with traditional offline heat‐reflux extraction, online extraction avoided the instrument, time, solvent, and energy consumption, and purified two phenolic compounds (honokiol and magnolol) from M. officinalis and three alkaloids (piperyline, piperine, and piperanine) from P. nigrum with high extraction efficiency. The superiority of the developed methodology is to establish an easy, rapid, and efficient technique for the purification of a wide variety of bioactive components from solid natural products.  相似文献   

3.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

4.
In this paper, an off-line combination method of supercritical fluid extraction and supercritical fluid chromatography was developed for the selective extraction and isolation of diphenylheptanes and flavonoids from Alpinia officinarum Hance. The enrichment of target components was successfully achieved using supercritical fluid extraction with the following conditions (8% ethanol as co-solvent at 45°C and 30 MPa for 30 min). Taking full advantage of the complementarity of supercritical fluid chromatography stationary phases, a two-step preparative supercritical fluid chromatography strategy was constructed. The extract was firstly divided into seven fractions on a Diol column (250 × 20 mm internal diameter, 10 μm) within 8 min by gradient elution increasing from 5% to 20% modifier (methanol) at 55 ml/min and 15 MPa. Then the seven fractions were separated by using a 1-AA or a DEA column (250 × 19 mm internal diameter, 5 μm) at 50 ml/min and 13.5 MPa. This two-step strategy showed superior separation ability for structural analogs. As a result, seven compounds, including four diphenylheptanes and three flavonoids with high purity, were successfully obtained. The developed method is also helpful for the extraction and isolation of other structural analogs of traditional Chinese medicines.  相似文献   

5.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

6.
This research investigated the effectiveness of an integrated method for the extraction and separation of naphthoquinones and diarylheptanes from exocarp of Juglands mandshurica Maxim. (namely, green walnut husks). The target compounds were obtained by ultra-turrax homogenization (UTH) coupled with ultrasound-assisted extraction (UAE) technology followed by high-speed countercurrent chromatography (HSCCC). The UTH-UAE extraction method achieved higher efficiency with 2.49- and 2.36-fold to those by UAE, and 1.39- and 1.34-fold to those by UTH in a short time. HSCCC was adopted for further separation and purification; six target compounds, namely, regiolone (RE), juglone (JU), myricatomento-genin (MG), galleon (GA), 2-oxatrycyclo[13.2.2.13,7]eicosa-3,5,7(20),15,17,18-hexaen-10-16-diol (OE), and juglanin A (JA), were separated with more than 95.37% purities and more than 84.71% final recovery rates, respectively. In this study, the integrated strategy of extraction and separation could get high purity compounds quickly, which would provide time and solvent saved method for the natural products separation from plants.  相似文献   

7.
In recent years, natural deep eutectic solvents have been favored greatly due to their environment friendly, mild biological toxicity and simple biodegradability. Natural deep eutectic solvents gradually applied for the extracting bioactive compounds from natural products efficiently. In this study, 20 natural deep eutectic solvents were prepared and their physical and chemical properties were tested. The ultrasonic-assisted extraction method was used to extract flavonoids from Trollius ledebouri and high-performance liquid chromatography-ultraviolet was applied to examine two main bioactive flavonoids (orientin and vitexin). Compared with traditional solvents (water and 60% ethanol solution), natural deep eutectic solvents composed of L(-)-proline and levulinic acid (molar ratio 1:2) show a super extraction efficiency. On this basis, the response surface method was used to optimize the extraction temperature, extraction time, water contents, and solid–liquid ratio. As a consequence, the extraction temperature 60℃, extraction time 18 min, water content 14% (v/v), and the solid–liquid ratio 48 mL·g−1 were chosen as the best extraction process. This study shows that natural deep eutectic solvents can effectively extract flavonoids from T. ledebouri, laying a foundation for the further application of natural deep eutectic solvents to extract bioactive compounds from natural products.  相似文献   

8.
In this paper, high‐speed counter‐current chromatography (HSCCC), assisted with ESI‐MS, was first successfully applied to the preparative separation of three macrolide antibiotics, brefeldin A (12.6 mg, 99.0%), 7′‐O‐formylbrefeldin A (6.5 mg, 95.0%) and 7′‐O‐acetylbrefeldin A (5.0 mg, 92.3%) from the crude extract of the microbe Penicillium SHZK‐15. Considering the chemical nature and partition coefficient (K) values of the three target compounds, a two‐step HSCCC isolation protocol was developed in order to obtain products with high purity. In the two‐step method, the crude ethyl acetate extract was first fractionated and resulted in two peak fractions by HSCCC using solvent system n‐hexane/ethyl acetate/methanol/water (HEMWat) (3:7:5:5 v/v/v/v), then purified using solvent systems HEMWat (3:5:3:5 v/v/v/v) and HEMWat (7:3:5:5 v/v/v/v) for each fraction. The purities and structures of the isolated compounds were determined by HPLC, X‐ray crystallography, ESI‐MS and NMR. The results demonstrated that HSCCC is a fast and efficient technique for systematic isolation of bioactive compounds from the microbes.  相似文献   

9.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and on‐line isolation of the anthocyanidins from the petals of Chaenomeles sinensis in two stages. The SFE parameters were optimized by an orthogonal test, and the solvent systems of SFE and HSCCC were calculated and optimized with the help of a multiexponential function model. In the first stage, the lower phase of the solvent system of n‐butanol/tert‐butyl methyl ether/acetonitrile/0.1% aqueous TFA (0.715:1.0:0.134:1.592, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, after extraction, the extractants were pumped into HSCCC column, and then eluted with the corresponding upper phase to isolate the moderately hydrophobic compounds. In the second stage, the upper phase of the solvent system of n‐butanol/ethyl acetate/acetonitrile/0.1% aqueous TFA (1.348:1.0:0.605:2.156, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the hydrophobic compounds. With the help of two‐stage SFE/HSCCC, six compounds including delphinidin‐3‐O‐glucoside (Dp3G), cyanidin‐3‐O‐glucoside (Cy3G), peonidin‐3‐O‐glucoside (Pn3G), delphinidin (Dp), peonidin (Pn), and malvidin (Mv) were successfully separated within 300 min. The targeted compounds were identified by UV spectrophotometry, MS, and NMR spectroscopy. This research has opened up great prospects for the industrial application of SFE–HSCCC for the automatic extraction and separation of unstable compounds.  相似文献   

10.
Phytosterols are bioactive compounds which occur in low concentrations in plant oils. Due to their beneficial effects on human health, phytosterols have already been supplemented to food. Commercial phytosterol standards show insufficient purity and/or are very expensive. In this study, we developed a high-speed counter-current chromatography (HSCCC) method for the fractionation and analysis of a commercial crude β-sitosterol standard (purity ∼60% according to supplier). Different solvent systems were tested in shake-flask experiments, and the system n-hexane/methanol/aqueous silver nitrate solution (34/24/1, v/v/v) was finally used for HSCCC fractionation. About 50 mg phytosterols was injected and distributed into 57 fractions. Selected fractions were condensed and re-injected into the HSCCC system. This measure provided pure sitostanol (>99%) and β-sitosterol (∼99%), as well as a mixture of campesterol and stigmasterol without further phytosterols. An enriched HSCCC fraction facilitated the mass spectrometric analysis of further 11 minor phytosterols (after trimethylsilylation). It was also shown that the commercial product contained about 0.3% carotinoids which eluted without delay into an early HSCCC fraction and which were separated from the phytosterols.  相似文献   

11.
Extracts of the fungus Inonotus obliquus exhibit cytotoxic properties against different cancers; hence, this fungal species has been extensively studied. This study aimed to extract total triterpenoids from Inonotus obliquus using ionic liquids (ILs) and separate potential lactate dehydrogenase (LDH) inhibitors via ultrafiltration (UF)-high-speed countercurrent chromatography (HSCCC). Total triterpenoids from Inonotus obliquus were extracted by performing a single-factor experiment and employing a central composite design via ultrasonic-assisted extraction (UAE) and heat-assisted extraction (HAE). The extract was composed of 1-butyl-3-methylimidazolium bromide as the IL and methanol as the dispersant. Ultrafiltration-liquid chromatography (UF-LC) was used to rapidly scan the LDH inhibitors and betulin and lanosterol were identified as potential inhibitors. To obtain these target compounds, betulin and lanosterol with the purities of 95.9% and 97.8% were isolated from HSCCC within 120 min. Their structures were identified using several techniques, among which IL-HAE was fast and effective. This study reports the extraction of triterpenoids from Inonotus obliquus by IL for the first time. Collectively, the findings demonstrate that UF-LC is an effective tool for screening potential LDH inhibitors from crude extracts of I. obliquus and may help to identify bioactive substances against myocardial infarction, whereas high-purity compounds can be separated via UF-HSCCC.  相似文献   

12.
A new analytical method for the simultaneous determination of trace levels of seven prohibited N‐nitrosamines (N‐nitrosodimethylamine, N‐nitrosoethylmethylamine, N‐nitrosopyrrolidine, N‐nitrosodiethylamine, N‐nitrosopiperidine, N‐nitrosomorpholine, and N‐nitrosodiethanolamine) in cosmetic products has been developed. The method is based on vortex‐assisted reversed‐phase dispersive liquid–liquid microextraction, which allows the extraction of highly polar compounds, followed by liquid chromatography with mass spectrometry. The variables involved in the extraction process were studied to obtain the highest enrichment factor. Under the selected conditions, 75 μL of water as extraction solvent was added to 5 mL of n‐hexane sample solution and assisted by vortex mixing during 30 s to form the cloudy solution. The method was successfully validated showing good linearity (0.5–50 ng/mL), enrichment factors up to 65 depending on the target compound, limits of detection values of 1.8–50 ng/g, and good repeatability (RSD < 9.8%). Finally, the proposed method was applied to different cosmetic samples. Quantitative relative recovery values (80–113%) were obtained, thus showing that matrix effects were negligible. The achieved analytical features of the proposed method, besides of its simplicity and affordability, make it useful to perform the quality control of cosmetic products to ensure the safety of consumers.  相似文献   

13.
Proanthocyanidins were separated for the first time from Cinnamomum longepaniculatum leaves. An experiment‐based extraction strategy was used to research the efficiency of an ultrasound‐assisted method for proanthocyanidins extraction. The Plackett–Burman design results revealed that the ultrasonication time, ultrasonic power and liquid/solid ratio were the most significant parameters among the six variables in the extraction process. Upon further optimization of the Box–Behnken design, the optimal conditions were obtained as follows: extraction temperature, 100°C; ethanol concentration, 70%; pH 5; ultrasonication power, 660 W; ultrasonication time, 44 min; liquid/solid ratio, 20 mL/g. Under the obtained conditions, the extraction yield of the proanthocyanidins using the ultrasonic‐assisted method was 7.88 ± 0.21 mg/g, which is higher than that obtained using traditional methods. The phloroglucinolysis products of the proanthocyanidins, including the terminal units and derivatives from the extension units, were tentatively identified using a liquid chromatography with tandem mass spectrometry analysis. Cinnamomum longepaniculatum proanthocyanidins have promising antioxidant and anti‐nutritional properties. In summary, an ultrasound‐assisted method in combination with a response surface experimental design is an efficient methodology for the sufficient isolation of proanthocyanidins from Cinnamomum longepaniculatum leaves, and this method could be used for the separation of other bioactive compounds.  相似文献   

14.
Capsaicin and dihydrocapsaicin are two main bioactive components of Capsicum frutescens and are widely used as food additives and drugs in China and India. Due to their similarity in structures, isolation of capsaicin and dihydrocapsaicin with traditional methods such as silica gel column chromatography, normal‐phase thin‐layer chromatography (TLC) becomes difficult. This study involves separating capsaicin and dihydrocapsaicin with sufficient purity and recovery using high‐speed counter‐current chromatography (HSCCC) with a solvent system composed of n‐hexane–ethyl acetate–methanol–water–acetic acid (20:20:20:20:2, v/v/v/v/v). Separation parameters such as sample volume, and sample concentration were first optimized on analytical HSCCC, and then scaled up to preparative HSCCC. 0.65 g capsaicin and 0.28 g dihydrocapsaicin were obtained from 1.2 g crude extract and their purities were 98.5 and 97.8%, respectively. The recoveries of the two compounds were 86.3 and 85.4%, respectively. The purity of the isolated compounds was analyzed by high‐performance liquid chromatography (HPLC) and their structures were identified by 1H nuclear magnetic resonance (NMR) and 13C NMR analysis.  相似文献   

15.
A green and efficient strategy was established and optimized for target‐oriented extraction, enrichment and separation of cadinene sesquiterpenoids from Eupatorium adenophorum Spreng., using the combination of supercritical fluid extraction, molecular distillation, and industrial preparative chromatography for the first time. The extraction conditions of supercritical fluid extraction were initially optimized by orthogonal experimental design. Under the optimum conditions, the contents of 9‐oxo‐10,11‐dehydroageraphorone and 10‐9‐oxo‐ageraphorone, which were 55.00% and 6.01%, respectively, were much higher than conventional extraction methods. Then, the molecular distillation enrichment method was established and investigated by response surface methodology technology, which showed strong specificity for enriching target compounds and removing impurities from crude extracts. Under the optimum conditions of molecular distillation, total contents of cadinene sesquiterpenoids were increased to 89.19%. Finally, a total of 146 mg of 9‐oxo‐10,11‐dehydroageraphorone and 29 mg of 10‐9‐oxo‐ageraphorone were easily obtained by industrial preparative chromatography, from 200 mg of distillation fraction, with purities over 99%. The contents of target components were analyzed by HPLC, and structures of them were identified by high‐resolution MS, 1H‐NMR, and 13C‐NMR spectroscopy. These results indicate that it is a simple, effective, and eco‐friendly strategy, which is easily converted into industrial scale.  相似文献   

16.
As an alternative to Dendrobium candidum, protocorm-like bodies (PLBs) of Dendrobium candidum are of great value due to their high yield and low cost. In this work, three glycoside compounds, β-D-glucopyranose 1-[(E)-3-(4-hydroxyphenyl)-2-propenoat] (I), β-D-glucopyranose 1-[(E)-3-(3, 4-dihydroxyphenyl)-2-propenoat] (II), and 1-O-sinapoyl glucopyranoside (III), were extracted and isolated by ultrahigh pressure extraction (UPE) coupled with high-speed counter-current chromatography (HSCCC) from PLBs of D. officinale. First, the target compounds were optimized and prepared with 50% ethanol solution at a 1:30 (g/mL) solid/liquid ratio in 2 min under 300 MPa by UPE. Then, the crude extract was chromatographed with a silica gel column, and primary separation products were obtained. In addition, the products (150 mg) were separated by HSCCC under the solvent system of MTBE-n-butyl alcohol-acetonitrile-water (5:1:2:6, v/v/v/v), yielding 31.43 mg of compound I, 10.21 mg of compound II, and 24.75 mg of compound III. Their structures were further identified by ESI-MS, 1H NMR, and 13C NMR. The antioxidant results showed that the three compounds expressed moderate effects on the DPPH· scavenging effect. Compound II had the best antioxidant capacity and its IC50 value was 0.0497 mg/mL.  相似文献   

17.
A facile and efficient strategy is developed to modify aptamers on the surface of the magnetic metal‐organic framework MIL‐101 for the rapid magnetic solid‐phase extraction of ochratoxin A. To the best of our knowledge, this is the first attempt to create a robust aptamer‐modified magnetic MIL‐101 with covalent bonding for the magnetic separation and enrichment of ochratoxin A. The saturated adsorption of ochratoxin A by aptamer‐modified magnetic MIL‐101 was 7.9 times greater than that by magnetic metal‐organic framework MIL‐101 due to the former's high selective recognition as well as good stability. It could be used for extraction more than 12 times with no significant changes in the extraction efficiency. An aptamer‐modified magnetic MIL‐101‐based method of magnetic solid‐phase extraction combined with ultra high performance liquid chromatography with tandem mass spectrometry was developed for the determination of trace ochratoxin A with limit of detection of 0.067 ng/L. Ochratoxin A of 4.53–13.7 ng/kg was determined in corn and peanut samples. The recoveries were in the range 82.8–108% with a relative standard deviation (n = 5) of 4.5–6.5%. These results show that aptamer‐modified magnetic MIL‐101 exhibits selective and effective enrichment performance and have excellent potential for the analysis of ultra‐trace targets from complex matrices.  相似文献   

18.
Shaoyao‐Gancao decoction, a Chinese herbal formula, is composed of Paeoniae Radix alba and Glycyrrhiza Radix et rhizoma . It has been widely used to treat muscle spasms and asthma. However, little is known about the bioactive components of Shaoyao‐Gancao decoction. In the present study, the bioactive compounds in water‐extract of Shaoyao‐Gancao decoction were separated by the immobilized β2‐adrenoceptor affinity column and identified using quadrupole time‐of‐flight mass spectrometry. The affinity constants of the separated compounds that bind to β2‐adrenoceptor were determined by frontal analysis. Compound bioactivity was tested in a rat tracheal smooth muscle relaxation assay. We identified the bioactive compounds in the water extract of Shaoyao‐Gancao decoction that bound to the β2‐adrenoceptor as paeoniflorin and liquiritin. Paeoniflorin and liquiritin had only one binding site on the immobilized β2‐adrenoceptor, and the affinity constants were (2.16 ± 0.10) × 104 M−1 and (2.95 ± 0.15) × 104 M−1, respectively. Both compounds induced a concentration‐dependent relaxation of tracheal smooth muscle following K+‐stimulated contraction, and the relaxation effects were abrogated by the β2‐adrenoceptor antagonist, ICI 118551. Therefore, paeoniflorin and liquiritin are bioactive compounds in Shaoyao‐Gancao decoction and the β2‐adrenoceptor affinity chromatography is a useful tool for identifying potential β2‐adrenoceptor ligands in natural products used in traditional Chinese medicine.  相似文献   

19.
As a final step of the purine metabolism process, xanthine oxidase catalyzes the oxidation of hypoxanthine and xanthine into uric acid. Our research has demonstrated that Erycibe obtusifolia has xanthine oxidase inhibitory properties. The purpose of this paper is to describe a new strategy based on a combination of multiple mass spectrometric platforms and thin‐layer chromatography bioautography for effectively screening the xanthine oxidase inhibitory and antioxidant properties of E. obtusifolia. This strategy was accomplished through the following steps. (i) Separate the extract of E. obtusifolia into fractions by an autopurification system controlled by liquid chromatography with mass spectrometry. (ii) Determine the active fractions of E. obtusifolia by thin‐layer chromatography bioautography. (iii) Identify the structure of the main active compounds with the information provided by direct analysis in real time mass spectrometry. (iv) Calculate the IC50 value of each compound against xanthine oxidase using high‐performance liquid chromatography. Using the caulis of E. obtusifolia as the experimental material, seven target peaks were screened out as xanthine oxidase inhibitors or antioxidants. Our screening strategy allows for rapid analysis of small molecules with almost no sample preparation and can be completed within a week, making it a useful assay to identify unstable compounds and provide the empirical foundation for E. obtusifolia as a natural remedy for gout and oxidative‐stress‐related diseases.  相似文献   

20.
The utilization of deep eutectic solvent as an alternative and environmentally friendly option has gained significant attention. This study first proposed a series of benzylammonium chloride based-deep eutectic systems for the extraction of bioactive compounds from Gardenia jasminoides Ellis. Through the implementation of response surface methodology, the optimal solvent was determined to be dodecyldimethylbenzylammonium chloride–levulinic acid (1:3, mol/mol) with 35% (v/v) water, specifically tailored to extract geniposide, genipin-1-β-d -gentiobioside, crocin-1, and crocin-2 from gardenia fruits with the ratio of solid to liquid of 1:20 at 86°C for 16 min. Their total extraction yields could reach 70.6 mg/g, outperforming those obtained by other solvents and corresponding techniques. Furthermore, the eutectic system was retrieved after first-cycle extraction, and then applied in the subsequent extraction progress, yielding a consistent extraction efficiency of 97.1%. As compared to previous traditional methods, a quick, high-yielding, and green extraction procedure was achieved through simple heating settings that did not constrain the instrument. Therefore, dodecyldimethylbenzylammonium chloride–levulinic acid could serve as a sustainable and reusable solvent for efficient extraction of natural bioactive compounds from plant-based raw materials. The application of deep eutectic solvents has demonstrated their potential as designable solvents with stronger extraction capabilities than traditional organic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号