首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This contribution describes the purification of anthrax protective antigen (PA) protein from Escherichia coli lysate using bind-and-elute chromatography with newly designed weak anion-exchange membranes. Protein separation performance of the new AEX membrane adsorber was compared with the commercial Sartobind® D membrane adsorber and HiTrap™ DEAE FF resin column under preparative scale conditions. Dynamic protein binding capacities of all three stationary phases were determined using breakthrough curve analysis. The AEX membrane showed higher binding capacities than the Sartobind® D membrane at equivalent volumetric throughput and higher capacities than the HiTrap™ DEAE FF resin column at 15 times higher volumetric throughput. Anion-exchange chromatography was performed using all three stationary phases to purify PA protein. Quantitative SDS-PAGE analysis of effluent fractions showed that the purity of PA protein was higher for membrane adsorbers than the HiTrap™ DEAE FF resin column and was the same for the new AEX membrane and Sartobind® D membrane adsorbers. The effects of E. coli lysate load volume and volumetric flow rate on PA protein separation resolution using the membrane adsorbers were minor, and the peak elution profile remained un-changed even under conditions where >75% of the total protein dynamic binding capacity of the membranes had been utilized. PA protein peak resolution was higher using pH-gradient elution than with ionic strength gradient elution. Overall, the results clearly demonstrate that membrane chromatography is a high-capacity, high-throughput, high-resolution separation technique, and that resolution in membrane chromatography can be higher than resin column chromatography under preparative conditions and at much higher volumetric throughput.  相似文献   

2.
A novel approach for the fabrication of macroporous poly(glycidyl methacrylate-ethylene glycol dimethacrylate) monolith is presented. The method involved the use of sodium sulfate granules and organic solvents as co-porogens. Compared with the conventional monoliths [ML-(1-3)] using organic solvents only as a porogen, the improved monoliths [MLS-(1-3)] showed not only higher column efficiency and dynamic binding capacity (DBC) for protein (bovine serum albumin, BSA), but also higher column permeability and lower back pressure. It is considered that the superpores introduced by the solid granules played an important role for the improvement of the monolith performance. Moreover, poly(glycidyl methacrylate-diethylamine) tentacles were grafted onto the pore surface of MLS-3 monolith. This has further increased the DBC of BSA to 74.7 mg/ml, about three times higher than that of the monoliths without the grafted tentacles. This grafting does not obviously decrease the column permeability, so a new monolith of high column permeability and binding capacity has been produced for high-performance preparative protein chromatography.  相似文献   

3.
Abstract

This paper examines the use of 15–20 micron wide-pore silica-based ether bonded phases for the preparative hydrophobic interaction chromatography of proteins. In particular, silyl ethers are immobilized on large particle silica in an analogous manner to previously developed ether bonded 5 um analytical supports. The preparative supports are reproducibly prepared and exhibit constant chromatographic retention for at least five months of continual use. Preparative columns can be operated for protein chromatography with peak shapes and capacity as predicted by the Snyder gradient elution model. Moreover, similar retention times are obtained relative to those on the 5 um analytical columns, enabling the direct transition and scale-up of separation. Gradient optimization is seen to directly parallel that performed on 5 um bonded ether analytical columns. Acceptable chromatographic resolution was obtained with sample capacity of >15 mg protein/ml column volume using a repetitive injection technique. A column clean-up strategy is examined for rapid and safe removal of contaminants. An illustrative example of use of the bonded ether preparative columns is made by application to soybean trypsin inhibitor purification. Initial results are presented on a column-switching method for the analytical monitoring of preparative separation.  相似文献   

4.
The preparation of protein substrates requires that a large number of chromatographic fractions be analyzed for the presence of reactants, products and by-products. Analyses using linear matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) or single column liquid chromatography/mass spectrometry (LC/MS) have been inadequate because of mass resolution or throughput. Therefore, a high-throughput method employing an eight-channel parallel reverse-phase LC/MS system was developed. This system is capable of screening fractions from preparative ion-exchange chromatography with the required mass accuracy and throughput so that the protein purification process can be monitored in a relatively short period of time. As an example, the purification and analysis of an acylated protein with a molecular weight of 8.9 kDa is described and the detection of a contaminating by-product that differs in size by less than 20 Da is demonstrated. Using the current instrumentation and approach, it is practical to analyze 50 protein-containing fractions from column chromatography in less than 1 hour using parallel LC/MS.  相似文献   

5.
Experiments have been carried out to evaluate Counter Current Chromatography (CCC) as an alternative purification technique to preparative Reverse Phase High Performance Liquid Chromatography (RP-HPLC) for small molecule pharmaceuticals. The major drawback of CCC is the extensive time required in selecting the solvents to perform the separation. This is equivalent to choosing both the stationary phase and the mobile phase at the same time. In RP-HPLC it is a simple matter of deciding on the gradient, most samples can be purified on a C18 column with a water:acetonitrile gradient. The majority of the initial work was based on a standard test set of commercially available compounds, developed within our group to evaluate the performance of the HPLC apparatus and the column prior to the start of work each day. The work carried out on CCC has shown that the technique offers similar capabilities and can be carried out using similar protocols to RP-HPLC. CCC also has some advantages over RP-HPLC and can be regarded as a valuable addition to the chromatography toolbox.  相似文献   

6.
A method of rapid ion-exchange chromatography of DEAE-cellulose for preparative purposes is described. Basically, the flow-rate is increased by applying an air pressure on the column. By this technique it is possible to purify gram quantities of protein in 2-4 h with acceptable resolution. In preparations of bovine and porcine carbonic anhydrases the elution times were reduced by a factor of about ten compared to those of conventional methods. The enzymes purified in this way showed a high degree of homogeneity. The method should be generally applicable in protein purification, and especially advantageous in purification of unstable proteins where time-consuming separations often give rise to low yields of active material.  相似文献   

7.
The goal of the present work was to examine the hydrodynamic behavior of preparative scale packed chromatography beds during long-term cyclical operation at high loads using an experimental set-up with a high resolution measuring device of bed height. One agarose-based resin and one methacrylic-based resin were examined in a 140 mm column. Both resins exhibited hysteresis behavior during compression/relaxation cycles. The hystereses were less pronounced with decreasing hydrodynamic stress rate. The occurrence of hystereses was an indication for hydrodynamic memory behavior of the chromatography packing. During long-term cyclical operation at high loads of the column filled with methacrylic resin, oscillations of the steadily with time decreasing flow rate were observed for the first time. These oscillations were attributed to the viscoelasticity of the polymer particles network representing a system with materials with fading memory. Such nonlinear systems with feed-back are known to exhibit inherent self-oscillations. A decoupling of the two processes of bed compression and decrease of bed permeability was observed. The presented results explain why preparative packed-bed chromatography often yields unsatisfactory reproducible data and why unwanted phenomena like medium wall detachment or other symptoms of deteriorated chromatography beds are frequently observed.  相似文献   

8.
Preparative chromatography was successfully employed to recover ertapenem from mother liquor streams. The recovery process involved concentration of mother liquor stream by evaporation, purification by reversed-phase preparative high-performance liquid chromatography (HPLC), and removal of chromatographic solvents in the recovered fractions by evaporation. HPLC feed was prepared by stripping off the organic solvents from the mother liquor using a wiped-film evaporator. Purification was first carried out on a 25 cm x 0.46 cm analytical column packed with 10-microm Kromasil C8 particles and then scaled up to a 25 cm x 5 cm preparative column. Gram-level recovery of ertapenem with high purity was achieved by exploiting a novel approach based on pH mismatch between the feed and the eluent. Purified ertapenem streams from preparative HPLC runs were combined, evaporated and recycled into the crystallizer for ertapenem isolation.  相似文献   

9.
The objective of preparative separation is to purify the largest amount of material in the shortest time and at a minimum cost, i.e. to maximize throughout. One of the techniques for increasing throughput is to overload the column while maintaining purity and cycle time at the same level. This principle is applied in sample displacement mode chromatography, in which the column is overloaded with sample mixture until it is completely saturated. Soybean trypsin inhibitor was purified from a crude protein extract by this technique using an analytical anion-exchange column with small particle size (20 microns). The comparison of these results, using the criterion of throughput, with those derived from a conventional scale-up, using a 40-microns preparative column, led to the conclusion that the overloaded 20 microns column gave a higher throughput than the 40-microns column.  相似文献   

10.
Ultrahigh pressure liquid chromatography (UHPLC) is an emerging technique which utilizes pressures higher than 10,000 p.s.i. to overcome the flow resistance imposed when using very small particles as packing materials in fused-silica capillary columns (1 p.s.i.=6894.76 Pa). This technique has demonstrated exceptionally high separation speeds and chromatographic efficiencies. However, safety is a concern when extremely high pressures are used. In this study, the safety aspects of capillary column rupture during operation were identified and carefully evaluated. First, liquid jets may be formed as a result of blow-out of the on-column frits or from rupture of the capillary at or near the column inlet. Second, incorrect installation of the capillary at the injector, failure of the ferrule used in the capillary connection, or rupture of the capillary can produce high speed projectiles of silica particles or column fragments. Experiments were carried out in the laboratory to produce liquid (water) jets and capillary projectiles using a UHPLC system, and the power density, an important parameter describing water jets in industrial practice, was calculated. Experimental results were in accordance with theoretical calculations. Both indicated that water jets and capillary projectiles under ultrahigh pressures might lead to skin penetration under limited conditions. The use of a plexiglass shroud to cover an initial length of the installed capillary column can eliminate any safety-related concerns about liquid jets or capillary projectiles.  相似文献   

11.
Although the theoretical treatment of chromatographic processes on a preparative scale provides guidelines to the extent to which packing and stationary phase properties affect the target quantities such as sample input, throughput and resolution times sample input, a series of additional criteria were established to judge the quality of a packing in preparative column liquid chromatography. These include bed stability and flow resistance, chemical resistance and purity, solute accessibility, mass and biological recovery, fouling, regeneration and cost. Applying these criteria, the relative importance of physical and chemical structure parameters of packings and stationary phases was assessed. Commercial packings with mean particle diameters dp greater than 20 micron were listed for adsorption, size exclusion, ion-exchange and affinity chromatography. An analysis of the characteristic features of phase systems showed that adsorption media offer a high selectivity combined with adequate loadability, whereas ion exchangers and affinity media were best suited for biospecific solutes, particularly biopolymers, which can be attributed to their high selectivity and loadability.  相似文献   

12.
Refolding enables bioprocesses predicated on proteins expressed as inclusion bodies in Escherichia coli. Optimization of size-exclusion chromatography (SEC) refolding is a significant challenge because a wide range of factors, including the choice of gel media, the column dimensions and configuration, affect the final yield in a protein-specific manner. In this study, we investigated these factors by relating them to dispersive mixing and partitioning of refolding molecules within the SEC pore structure. Lysozyme was refolded using SEC resins giving different column dispersion and chromatography resolution. Despite a low separation resolution, the desalting SEC resin Sephadex G-25 resulted in a refolding yield that was 12-30% higher than those obtained with Superdex 75 and Superdex 200. This finding supported the notion that SEC refolding was enhanced by dispersive mixing, which was increased by a wide particle size distribution of the Sephadex G-25 used. Column dispersion was further improved by strategically placing an inlet gap before the packed resin beds, leading to a 20% increase in refolding yield. Refolding yield in Superdex 75 was 20% higher than that in Superdex 200 under conditions giving similar dispersive mixing. This yield enhancement is expected to be protein-specific since Superdex 75 was chosen to specifically maximize partitioning of lysozyme molecules within the resin particles, reducing the likelihood of aggregation during refolding. The highest refolding yield (65%) was achieved using a Sephadex G-25 column with a 15 mm inlet gap, suggesting that desalting systems optimized for dispersive mixing might be an economical and generic alternative for preparative SEC protein refolding.  相似文献   

13.
制备分离农药甲霜灵对映体的高效液相色谱法   总被引:5,自引:2,他引:5  
用高效液相色谱法对自制的纤维素-三(3,5-二甲基苯基氨基甲酸酯)手性制备柱的手性拆分能力进行了评价,并且在此制备柱上完成了对手性农药甲霜灵进行了半制备分离;同时对手性农药甲霜灵在纤维素-三(苯基氨基甲酸酯)、直链淀粉-三(苯基氨基甲酸酯)、纤维素-三(4-甲基苯甲酸酯)手性分析柱上的手性拆分进行了研究。  相似文献   

14.
Type-I coil planet centrifuge produces a uniformly circulating centrifugal force field to produce vortex motion of two immiscible solvent phases in a cylindrical cavity of the separation column to perform efficient countercurrent chromatography. The partition efficiency obtained from the original vortex column was substantially improved by threading the cylindrical cavity to increase the area of mass transfer between the two phases. Partition efficiency of the threaded column was evaluated by three different two-phase solvent systems with a broad range of hydrophobicity each with a set of suitable test samples. Overall results of the present studies indicated that the threaded cylindrical column substantially improves the partition efficiency in terms of theoretical plate number, peak resolution, and height equivalent of one theoretical plate. The results also indicated that higher peak resolution is produced by eluting either the upper phase in the head to tail direction or the lower phase in the reversed direction. When there is a choice in the mobile phase, a better separation is achieved by using the less viscous phase as the mobile phase. Since the present system gives extremely low column pressure, it may be a potential alternative to the conventional type-J HSCCC system for a large-scale preparative separation.  相似文献   

15.
High-speed counter-current chromatography (HSCCC) is a versatile technique in preparative separation and purification of pure compounds from complex matrices. As a preparative chromatography, there is a need to maximize the column production. Based on the plate theory of Van Deemter, the effect of the sample load on the separation was investigated in a preparative HSCCC with a 1000 ml column capacity. The test samples of hydroquinone, pyrocatechol and phenol were separated using a two-phase solvent system of n-hexane-ethyl acetate-ethanol-water (1:1:1:1, v/v/v/v) at different sample loads. The results showed that for the case of HSCCC, the agreement of the effect of sample load on peak height and peak width between the Van Deemter's theory and the experiments is excellent. Furthermore, the factors limiting the mass load, including the resolution between the peaks, the partition isotherm and the solute solubility were also discussed.  相似文献   

16.
In size-exclusion chromatography (SEC), proteins and peptides are separated according to their molecular size in solution. SEC is especially useful as an effective fractionation step to separate a vast amount of impurities from the components of interest and/or as final step for the separation of purified proteins from their aggregates, in a so-called polishing step. However, the throughput in SEC is low compared to other chromatographic processes as good resolution can be achieved only with a limited feed volume (i.e., maximal approximately 5% of the column volume can be loaded). This limitation opposed widespread application of conventional SEC in industry despite its excellent separation potential. Therefore a continuous separation process (namely preparative continuous annular chromatography) was developed and compared to a conventional SEC system both using Superdex 200 prep grade as sorbent. An immunoglobulin G sample with a high content of aggregates was chosen as a model protein solution. The influence of the feed flow-rate, eluent flow-rate and rotation rate on the separation efficiency was investigated. The height equivalent to a theoretical plate was lower for preparative continuous annular chromatography which could be explained by reduced extra column band broadening. The packing quality was proved to be identical for both systems. The productivity of conventional batch SEC was lower compared to continuous SEC, consequently buffer consumption was higher in batch mode.  相似文献   

17.
An on-line comprehensive two-dimensional preparative liquid chromatography system was developed for preparative separation of minor amount components from complicated natural products. Medium-pressure liquid chromatograph (MPLC) was applied as the first dimension and preparative HPLC as the second one, in conjunction with trapping column and makeup pump. The performance of the trapping column was evaluated, in terms of column size, dilution ratio and diameter-height ratio, as well as system pressure from the view of medium pressure liquid chromatograph. Satisfactory trapping efficiency can be achieved using a commercially available 15 mm × 30 mm i.d. ODS pre-column. The instrument operation and the performance of this MPLC × preparative HPLC system were illustrated by gram-scale isolation of crude macro-porous resin enriched water extract of Rheum hotaoense. Automated multi-step preparative separation of 25 compounds, whose structures were identified by MS, 1H NMR and even by less-sensitive 13C NMR, could be achieved in a short period of time using this system, exhibiting great advantages in analytical efficiency and sample treatment capacity compared with conventional methods.  相似文献   

18.
This study investigates the performance of ultrafiltration (UF) by membranes coated with titanium dioxide (TiO2) photocatalyst under ultraviolet (UV) illumination in removing natural organic matter (NOM) and possibly in reducing membrane fouling. Experiments were carried out using heat-resistant ceramic disc UF membranes and humic acids as model substances representing naturally occurring organic matter. Membrane sizes of 1, 15, and 50 kDa were used to examine the effects of coating under ultraviolet irradiation. A commercial humic solution was subjected to UF fractionation (batch process); gel filtration chromatography was applied to study the effects of molecular weight distribution of NOM on UF membrane fouling. When compared to naked membranes, UV254 (ultraviolet light of lambda=254 nm) illumination of TiO2-coated membranes exhibits more flux decline with similar effluent quality. Although the UF membrane is able to remove a significant amount of humic materials, the incorporated photocatalysis results in poor performance in terms of permeate flux. The TiO2-coated membrane under UV254 irradiation alters the molecular weight (MW) distribution of humic materials, reducing them to <1 kDa, which is smaller than the smallest (1-kDa) membrane in this study. Thus, TiO2-coated membranes under UV254 irradiation do not perform any better in removing natural organic matter and reducing membrane fouling.  相似文献   

19.
An apparatus for the chromatography with supercritical dense gases (supercritical fluids) has been designed, the characteristic feature being a pressure cascade. Three decreasing pressure levels containing the supply part, the chromatographic column, and the detector, respectively are controlled by feed back loops. Independent control and programming of pressure, temperature, and feed rate thereby become possible. Separations of oligostyrenes with n-pentane/methanol as the mobile phase and porous silica as the stationary phase were carried out on analytical and preparative scales. The resolution appears to be superior to that obtainable with liquid chromatography. Mass spectra of the peaks showed that oligomeric species of 1 monomer weight are cleanly separated. The influence of the parameters, particularly pressure and temperature, on the efficiency of the separation was studied. Slow upward pressure and temperature programming were found beneficial for the separation.  相似文献   

20.
The HPLC enantioselective separation of (R/S)-Naringenin, a chiral flavonoid found in several fruits juices and well-known for its beneficial health-related properties, including antioxidant, anti-inflammatory, cancer chemopreventive, immunomodulating and antimicrobial activities, has been performed on both analytical and (semi)-preparative scale using an amylose derived Chiralpak AD chiral stationary phase (CSP). A standard screening protocol for cellulose and amylose based CSPs was firstly applied to analytical Chiralcel OD-H and Chiralpak AD-H, as well as to Lux Cellulose-1, Lux Cellulose-2 and Lux Amylose-2 in order to identify the best experimental condition for the subsequent scaling-up. Using Chiralpak AD-H and eluting with pure methanol (without acidic or basic additives) relatively short retention times, high enantioselectivity and good resolution (α=1.49, R(s)=3.48) were observed. Therefore, these experimental conditions were properly scaled-up to (semi)-preparative scale using both a pre-packed Regispack column and a Chiralpak AD column packed in house with bulk CSP. The developed preparative method proved to be superior to previously published methods in terms of elution times, separation and resolution and is suitable for obtaining a quick access to the desired enantiomers with high enantiomeric excess and amounts sufficient for biological investigations. Future scale-up options (enantioselective supercritical fluid chromatography or HPLC in the Simulated Moving Bed mode) were also evaluated. It could be shown that both methodologies have a high potential for future production of Naringenin enantiomers by enantioselective chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号