首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The modification of a surface at the molecular level with precise control of the building blocks generates an integrated molecular system. This field has progressed rapidly in recent years through the use of self-assembled monolayer (SAM) interfaces. Recent developments on surface-initiated chemical reactions, functionalization, and graft polymerization on SAM interfaces are emphasized in the present review. A number of surface modifications by grafting are reviewed. The grafting of polyaniline on a glass surface, previously modified with a silane self-assembled monolayer (SAM), is examined in detail for both planar and 3-D systems, such as fibers, nanoparticles, and even polymer patterned surfaces. We also discuss the graft polymerization of water-soluble polymers on the surface of silicon nanoparticles, which generate stable aqueous colloidal solutions and have numerous applications. Finally, we compare and review some surface-modification techniques on the surfaces of polymers, such as two-solvent entrapment, polymer blending, and chemical grafting, which improve their biocompatibility.  相似文献   

2.
Life on earth is based on compounds that have carbon frames and backbones. Today, chemists have added to the world of biomolecules and biopolymers approximately 107 different synthetic molecules and polymers, the structures of which also depend on the formation of strong, stable carbon–carbon bonds. Although the stability of carbon–carbon bonds has been recognized for more than a century, the two natural modifications graphite and diamond were, until recently, the only allotropic forms of carbon on earth that were available in macroscopic quantities and were structurally well characterized. With the synthesis of macroscopic quantities of buckminsterfullerene (C60) and the higher fullerenes (C70, C76, C78, etc.) and the exploration of the fascinating properties of these all-carbon spheres, this situation has completely changed. In the coming decades, the design, preparation, and study of novel molecular and polymeric allotropic forms of carbon will be a central topic in chemistry. Research in this area will dramatically advance the fundamental knowledge on carbon-based matter and, as already illustrated by the ongoing work on C60, generate unprecedented technological perspectives. This review surveys synthetic organic-chemical approaches toward the preparation and study of all-carbon molecules and polymers that differ from the familiar networks of graphite and diamond as well as from the fullerenes. We will also discuss the ongoing research on fullerenes with a particular focus on the synthetic approaches to these all-carbon spheres and their transition metal complexes.  相似文献   

3.
Sequence-defined polymers can be programmed to self-assemble into precise nanostructures for applications in biosensing, drug delivery, optics, and molecular computation. Inspired by the natural self-assembly processes present in biological protein and DNA systems, sets of molecular design rules have emerged across materials classes as instructions to build a variety of tunable structures. This review highlights recent advances in self-assembled sequence-defined and sequence-specific polymers across peptides, peptoids, DNA, and non-biological synthetic materials, with a focus on synthesis, assembly processes and overall structure. Specifically, these self-assembled structures are free-floating, as such constructs can potentially serve as a platform for the aforementioned applications. Emphasis is placed on the molecular design of polymers that self-assemble into zero-dimensional, one-dimensional, two-dimensional, or three-dimensional nanostructures. With the development of automated syntheses and increasing control over self-assembly, future work may focus on emerging classes of compatible hybrid materials with exciting directions toward new architectures and applications.  相似文献   

4.
Research into the structure, properties and applications of graphene has moved at a tremendous pace over the past few years. This review describes one aspect of this research, that of the incorporation of graphene particles with a range of polymers to create novel hybrid materials with increased functionality such as improved conductance, increased strength and introduced biocompatibility or cytotoxicity. This review focuses on dispersing graphene in polymer matrices, both insulating and conducting. Additionally, a brief discussion of carbon based platelet production methods is given in order to provide context on the subsequent use of this family of materials such as graphene, graphene oxide (GO) and reduced graphene oxide (rGO) incorporated into polymeric thin films.  相似文献   

5.
《中国化学快报》2020,31(6):1443-1447
Nanocomposite hydrogels based on carbon dots(CDs) and polymers have emerged as new materials with integrated properties of individual components,leading to their important applications in the field of soft nanomaterials.This perspective highlights recent advances in the development of nanocomposite hydrogels from CDs and polymers.We review the preparation methods of nanocomposite hydrogels based on CDs and polymers,and emerging applications of these nanocomposite hydrogels such as environmental remediation,energy storage,sensing,drug delivery and bioimaging.We conclude with the discussion of new research directions in the development of new type of nanocomposite hydrogels based on CDs and polymers.  相似文献   

6.
《中国化学快报》2023,34(11):108177
Nanocarriers play an important role in drug delivery for disease treatment. However, nanocarriers face a series of physiological barriers after administration such as blood clearance, nonspecific tissue/cell localization, poor cellular uptake, and endosome trapping. These physiological barriers seriously reduce the accumulation of drugs in target action site, which results in poor therapeutic efficiency. Although polyethylene glycol (PEG) can increase the blood circulation time of nanocarriers, its application is limited due to the “PEG dilemma”. Zwitterionic polymers have been emerging as an appealing alternative to PEG owing to their excellent performance in resisting nonspecific protein adsorption. Importantly, the diverse structures bring functional versatility to zwitterionic polymers beyond nonfouling. This review focuses on the structures and characters of zwitterionic polymers, and will discuss and summarize the application of zwitterionic polymers for drug delivery. We will highlight the strategies of zwitterionic polymers to address the physiological barriers during drug delivery. Finally, we will give some suggestions that can be utilized for the development of zwitterionic polymers for drug delivery. This review will also provide an outlook for this field. Our aim is to provide a comprehensive and systemic review on the application of zwitterionic polymers for drug delivery and promote the development of zwitterionic polymers.  相似文献   

7.
Tetrazole compounds have been studied for more than one hundred years and applied in various areas. Several years ago Sharpless and his co-workers reported an environmentally friendly process for the preparation of 5-substituted 1H-tetrazoles in water with zinc salt as catalysts. To reveal the exact role of the zinc salt in this reaction, a series of hydrothermal reactions aimed at trapping and characterizing the solid intermediates were investigated. This study allowed us to obtain a myriad interesting metal-organic coordination polymers that not only partially showed the role of the metal species in the synthesis of tetrazole compounds but also provided a class of complexes displaying interesting chemical and physical properties such as second harmonic generation (SHG), fluorescence, ferroelectric and dielectric behaviors. In this tutorial review, we will mainly focus on tetrazole coordination compounds synthesized by in situ hydrothermal methods. First, we will discuss the synthesis and crystal structures of these compounds. Their various properties will be mentioned and we will show the applications of tetrazole coordination compounds in organic synthesis. Finally, we will outline some expectations in this area of chemistry. The direct coordination chemistry of tetrazoles to metal ions and in situ synthesis of tetrazole through cycloaddition between organotin azide and organic cyano group will be not discussed in this review.  相似文献   

8.
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.  相似文献   

9.
Liu Y  Wang Z  Zhang X 《Chemical Society reviews》2012,41(18):5922-5932
Supramolecular polymers are made of monomers that are held together by noncovalent interactions. This is the reason for the wide range of novel properties, such as reversibility and responses to stimuli, exhibited by supramolecular polymers. A range of supramolecular polymerization methods have been developed leading to a number of novel supramolecular materials. However, standard techniques for the characterization of supramolecular polymers have yet to be established. The dynamic nature of supramolecular polymers makes them difficult to be fully characterized using conventional polymer techniques. This tutorial review summarizes various methods for characterizing supramolecular polymers, including theoretical estimation, size exclusion chromatography, viscometry, light scattering, vapor pressure osmometry, mass spectrometry, NMR spectroscopy, scanning probe microscopy, electron microscopy, and atomic force microscopy-based single molecule force spectroscopy. Each of these methods has its own particular advantages and disadvantages. Most of the methods are used to characterize the supramolecular polymer chain itself. However, some of the methods can be used to study the self-assembled state formed by supramolecular polymers. The characterization of a supramolecular polymer cannot be realized with a single method; a convincing conclusion relies on the combination of several different techniques.  相似文献   

10.
Theranostic nanosystems that integrate diagnosis and therapy have garnered increasing attention for personalized medicine.The integration of the versatile nanoparticles to fabricate self-assembled theranostic nanomedicines becomes increasingly important in current medical research.Mesoporous silica nanoparticles(MSN)with their highly attractive physicochemical properties and favorable morphological attributes represent ideal templates for the controlled assembly and integration of functional nanomaterials to fabricate self-assembled theranostic nanomedicines.The rationally designed combination strategy and heterostructure will improve the overall bioavailability and preserve the unique property of each nanocomponent.In this review,the cutting-edge strategies for the designed fabrication of MSN-templated self-assembled nanomedicines are summarized.We categorize MSN-based nanomedicines by their unique heterostructures,including core-shell,yolk-shell,core-satellite,heterodimer and core-shell-satellite structures,and discuss the controlled assembly approaches as well as the intriguing applications for disease theranostics.Finally,a perspective on the challenges in the clinical translation of self-assembled theranostic nanomedicines is highlighted.  相似文献   

11.
超临界CO2在微孔聚合物制备中的应用   总被引:15,自引:0,他引:15  
微孔聚合物是80年代初发明的一种新型材料,在90年代由于超临界CO2的使用而得到了很大发展,并被誉为“二十一世纪的新型材料”。本文介绍了微孔聚合物的基本制备方法、结构特点和性能,以及研究现状。特别介绍了在微孔聚合物制备中应用超临界CO2的优点,详细介绍了分步快速升温法、快速降压法和连续法的基本过程和研究成果,并对微孔聚合物的进一步发展进行了展望。  相似文献   

12.
The present review has sought to explore the technological advances that have been made in recent years towards the selective analysis of uric acid and critically evaluate how they could, in fact, be exploited as a basis for a multi analyte sensor incorporating uric acid detection. Numerous strategies have evolved in recent years but these have invariably focused on the manufacture and response characterization of discrete sensors. Various methods of obtaining selective detection such as use of uricase enzymes, nanoparticles, carbon nanotubes, polymers, conducting polymers and MIPs are also discussed along with the clinical relevance of UA determination.  相似文献   

13.
Marine organisms such as plants, algae or small animals can adhere to surfaces of materials that are submerged in ocean. The accumulation of these organisms on surfaces is a marine biofouling process that has considerable adverse effects. Marine biofouling on ship hulls can cause severe fuel consumption increase. Investigations on antifouling polymers are therefore becoming important research topics for marine vessel operations. Antifouling polymers can be applied as coating layers on the ship hull, protecting it against the settlement and growth of sea organisms. Polyethylene glycol (PEG) is a hydrophilic polymer that can effectively resist the accumulation of marine organisms. PEG-based antifouling coatings have therefore been extensively researched and developed. However, the inferior stability of PEG makes it subject to degradation, rendering it ineffective for long-term services. Zwitterionic polymers have also emerged as promising antifouling materials in recent years. These polymers consist of both positively charged and negatively charged functional groups. Various zwitterionic polymers have been demonstrated to exhibit exceptional antifouling properties. Previously, surface characterizations of zwitterionic polymers have revealed that strong surface hydration is critical for their antifouling properties. In addition to these hydrophilic polymers, amphiphilic materials have also been developed as potential antifouling coatings. Both hydrophobic and hydrophilic functional groups are incorporated into the backbones or sidechains of these polymers. It has been demonstrated that the antifouling performance can be enhanced by precisely controlling the sequence of the hydrophobic-hydrophilic functionalities. Since biofouling generally occurs at the outer surface of the coatings, the antifouling properties of these coatings are closely related to their surface characteristics in water. Therefore, understanding of the surface molecular structures of antifouling materials is imperative for their future developments. In this review, we will summarize our recent advancements of antifouling material surface analysis using sum frequency generation (SFG) vibrational spectroscopy. SFG is a surface-sensitive technique which can provide molecular information of water and polymer structures at interfaces in situ in real time. The antifouling polymers we will review include zwitterionic polymer brushes, mixed charged polymers, and amphiphilic polypeptoids. Interfacial hydration studies of these polymers by SFG will be presented. The salt effect on antifouling polymer surface hydration will also be discussed. In addition, the interactions between antifouling materials and protein molecules as well as algae will be reviewed. The above research clearly established strong correlations between strong surface hydration and good antifouling properties. It also demonstrated that SFG is a powerful technique to provide molecular level understanding of polymer antifouling mechanisms.  相似文献   

14.
The substantial rapid growth of synthetic polymers—plastics, man-made fibers, films, rubbers, and coatings—which continued unabated over many years, suffered a severe setback for the first time in 1973–1974 followed by another in 1980. A major cause of these reverses was the changed situation with respect to raw materials and energy. For industrial polymer research, in particular, this presents a fresh challenge with considerably changed priorities. The individual ways of meeting this challenge are highlighted and illustrated by examples: the search for alternative raw material sources for monomers; the development of economic methods for production and processing of polymers; the recycling of polymers; and finally the development of new raw material-saving and energy-saving technologies based on the use of polymers. In the future, the applications of polymers to new technologies such as communication- and information-systems or biotechnology will join the traditional uses. But the efforts required in research and development to achieve this demand wide-ranging interdisciplinary cooperation on an even greater scale than hitherto.  相似文献   

15.
The growth in textile and printing industries proven detrimental to the aquatic environment as the industrial waste containing dye seeped into the ecosystem. A high concentration of dye in water possess negative impacts on water ecosystem and harmful to human health. Removal of methylene blue (MB) dye from industrial waste via adsorption pathway has been widely investigated that promised high efficiency of MB removal. This review will summarize researches published from 2008 to 2019 on the removal of MB using carbon adsorbent with focus will be given on the synthesis and modification of carbon-based materials, and the structural properties influencing the performance of MB adsorption. Summary on the type of material used for the synthesis of carbon materials (activated carbon and biochar) will be included from utilization of the naturally occurring carbon sources such as polymers, biomasses and biowastes, and also sucrose and hydrocarbon gases. Modification of carbon materials such as chemical activation and physical activation; surface grafting to form functionalized surfaces; deposition with metal and magnetic nanoparticles via impregnation; and manufacturing of carbon composites will be discussed on the effects to promote MB adsorption and desorption. Another type of carbon adsorbents such as porous carbon; graphitic carbons including graphite, graphene, graphene oxide, and carbon nitride (g-C3N4); and finally nanocarbon in the form of nanotube, nanorod and nanofiber; will be included in the review with details on the synthesis method and the correlation between structural properties and adsorption activity. The regeneration process to increase the life cycle of carbon adsorbent will also be discussed based on two regeneration pathway i.e. a thermal degradation and desorption on MB. Finally the thermodynamics, kinetics, and the adsorption models of MB on carbon adsorbent will be discussed in this review.  相似文献   

16.
甲壳型液晶高分子的发展很大程度上依赖于聚合物自组装的发展,而各种可设计、可预测、可调控的自组装策略的涌现,将甲壳型液晶高分子研究推向前所未有的高度,同时也极大地丰富了高分子化学与物理的内容,提升了研究水准.研究表明,侧链"甲壳效应"在调控甲壳型液晶高分子有序结构等方面有着重要作用.本综述从甲壳型液晶高分子设计合成、液晶相态调控、嵌段共聚物自组装和功能化应用等方面,总结和评述了近年来该领域国内的最新研究进展.最后,本综述总结了甲壳型液晶高分子在发展中所面临的主要问题,并对其发展趋势进行了展望.  相似文献   

17.
Controlled release technology addresses problems associated with excessive use of toxic agricultural chemicals. This paper reviews the studies on the use of carbohydrate polymers as controlled release matrices for pesticides. Alginates, starch and its derivatives, chitosan, carboxymethylcellulose and ethylcellulose are some of the natural polymers discussed in this review. The advantages and disadvantages of these polymeric systems as well as the factors that affect pesticide release are presented. A discussion on the polymers’ encapsulation efficiency and release profile is also included, which will aid future researchers in identifying the suitable formulation for controlled release of pesticides. Combination of two polymers, incorporation of sorbents into polymer matrices, and modification of polymer systems are some of the strategies also discussed herein. Recent trends in this area of research include nanoformulation, nanoencapsulation, and the development of polymeric systems with dual properties such as controlled release with photo-protective property and the attract-and-kill strategy. Cytotoxicity studies are being conducted to address safety issues of pesticide handlers as well as to determine the toxicity of the formulation to non-target organisms such as the plant itself.  相似文献   

18.
Surface immobilization methods for aptamer diagnostic applications   总被引:1,自引:0,他引:1  
In this review we examine various methods for the immobilization of aptamers onto different substrates that can be utilized in a diverse array of analytical formats. In most cases, covalent linking to surfaces is preferred over physisorption, which is reflected in the bulk of the reports covered within this review. Conjugation of aptamers with appropriate linkers directly to gold films or particles is discussed first, followed by methods for conjugating aptamers to functionally modified surfaces. In many aptamer-based applications, silicates and silicon oxide surfaces provide an advantage over metallic substrates, and generally require surface modification prior to covalent attachment of the aptamers. Chemical protocols for covalent attachment of aptamers to functionalized surfaces are summarized in the review, showing common pathways employed for aptamer immobilization on different surfaces. Biocoatings, such as avidin or one of its derivatives, have been shown to be highly successful for immobilizing biotin-tethered aptamers on various surfaces (e.g., gold, silicates, polymers). There are also a few examples reported of aptamer immobilization on other novel substrates, such as quantum dots, carbon nanotubes, and carbohydrates. This review covers the literature on aptamer immobilization up to March 2007, including comparison of different linkers of varying size and chemical structure, 3′ versus 5′ attachment, and regeneration methods of aptamers on surfaces.  相似文献   

19.
A large amount of emerging research on carbon dots (CDs) has been gradually improving the understanding of their structures, properties and emission mechanism. Distinct from the dominating status of quantum confinement effect in quantum dots, CDs always suffer from the complicated optical properties, deriving from the large differences in raw materials and synthesis methods. The diverse concepts and species puzzle researchers and hinder the further study. Thus, there is an urgent need to unify the definition and clarify the confused relation of CDs. Herein, we classify the raw materials of CDs synthesis into small molecules and polymers, and discuss CDs from the aspects of raw materials. We believe that the polymer-like structures reserved in CDs are universal no matter from the condensation of small molecules or the direct inheritance of polymers. Moreover, many similarities are concluded between CDs and polymers through serious comparisons and enough evidences. The formation processes of CDs are mostly polymerization and the obtained CDs always possess polymeric characteristics, such as abundant reactive functional groups, polydispersity of products, highly crosslinked network structure and other similar properties to non-conjugated fluorescent polymers. Therefore, the new concept, polymer carbon dots (PCDs), is put forward to generalize all kinds of CDs based on the summary of related reports. Besides, the complicated influence factors of photoluminescence (PL) are discussed and mainly classified as molecule state, carbon core state, surface state and crosslink enhanced emission (CEE) effect. In general, this review puts forward PCDs as a unified definition of reported CDs, and summarizes the polymeric characteristics of PCDs from formation process and product properties, as well as simultaneously illustrates the PL mechanism.  相似文献   

20.
Coordination complexes (including discrete coordination complexes and coordination polymers) have demonstrated excellent performance in drug delivery. This review outlines recent advances of discrete coordination complexes, bulk coordination polymers, and nanoscale/microscale coordination polymers in drug delivery. Specifically, rationale and mechanism of coordination complexes in drug delivery are summarized in this contribution. In this review, we discuss applications of these coordination species in drug delivery from perspectives in chemistry and pharmaceutical sciences, and an outlook of these coordination species of interest in drug delivery will also be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号