首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescent hydrogels have promising applications in biomedical and engineering fields. However, they are usually mechanically weak. Here, we report a fluorescent composite hydrogel with high toughness, which is facilely prepared by solution casting ethanol solution of poly(hydroxyurethane) (PHU) and poly(stearyl acrylate-co-acrylic acid) (P[SA-co-AAc]) followed by swelling the casted film in water. The composite hydrogels with water content of 62–78 wt% possess remarkable mechanical performances, with tensile breaking stress of 0.3–1.1 MPa, breaking strain of 280%–400%, Young's modulus of 0.2–0.7 MPa, and tearing fracture energy of 1250–2630 J/m2. The high toughness is attributed to the effective energy dissipation of the network with hydrophobic association of SA units and hydrogen bonds between PHU and P(SA-co-AAc) as the physical crosslinks. The intense aggregation of carbamates and the formation of carbamate clusters through intra- and intermolecular hydrogen bonds endow the composite hydrogel with strong fluorescence. These hydrogels with high toughness and strong fluorescence should find applications in flexible electronics, information display, and biomedical devices.  相似文献   

2.
In the present study, poly(N-Isopropylacrylacrylamide-co-N-tertiarybutylacrylamide-co-hydroxyethylcrylamide) (NIPAM-co-NTBA-co-HEAAm) hydrogels are prepared with variation of molar ratio of hydrophilic HEAAm and hydrophobic NTBA. The prepared hydrogels are characterized with elemental analysis and Fourier transform infrared (FTIR) spectroscopy. The thermodynamics of swelling properties of poly(NIPAM-co-NTBA-co-HEAAm) hydrogels have also been discussed. The experimental C/N ratios are comparable with the theoretical value. The enthalpy change of mixing ∆Hmix, entropy change of mixing ∆Smix, free energy change of mixing ∆Gmix are determined for swelling of hydrogels at 25 °C. The value of total free energy of hydrogel swelling is found to be negative which confirms the lower critical solution temperature (LCST) exhibited in all hydrogels and the volume change transition shows the thermoresponsive behavior. The values of ∆Smix increase and ∆Gmix decrease with increasing amount of hydrophobic NTBA content in the hydrogels. The values of free energy change of elasticity (∆Gel) are found to be increased with increasing the hydrophobic NTBA content followed by decrease in swelling percentage. Also, the transition temperature of the hydrogel is found to be decreased with increasing the hydrophobic NTBA.  相似文献   

3.
A novel composite Chitosan graft poly (acrylic acid-co-N-isopropylacrylamide)/graphite oxide (CTS-g-P(AA-co-NIPAM/GO) is synthesized and used to remove methylene blue (MB) and fuchsin basic (FB) from aqueous solutions by adsorption. Small amount of GO brings about great improvement of the thermostability together with the adsorption amount. Adsorption capacities of MB and FB increase from 842.1 and 633.7 mg/g, respectively, to 1496.3 and 1000.8 mg/g, respectively, with 0.02 g intercalation amount of GO. The interactions between GO and main body of CTS-g-P(AA-co-NIPAM) graft copolymer are hydrogen and amide bonds, whereas that between dye molecules and CTS-g-P(AA-co-NIPAM)/GO composite is hydrogen bond as well as electrostatic interaction. Effect of various conditions on the adsorption capacities is discussed. Adsorption isotherms and thermodynamics are studied. The adsorption of both MB and FB are spontaneous and satisfy the Redlich-Peterson equation. Kinetic study shows that the adsorption of both dyes is in accordance with the Pseudo first-order kinetic model.  相似文献   

4.
Following hemorrhage-causing injury, lactate levels rise and correlate with the severity of injury and are a surrogate of oxygen debt. Posttraumatic injury also includes hyperglycemia, with continuously elevated glucose levels leading to extensive tissue damage, septicemia, and multiple organ dysfunction syndrome. A temporary, implantable, integrated glucose and lactate biosensor and communications biochip for physiological status monitoring during hemorrhage and for intensive care unit stays has been developed. The dual responsive, amperometric biotransducer uses the microdisc electrode array format upon which were separately immobilized glucose oxidase and lactate oxidase within biorecognition layers, 1.0–5.0 μm thick, of 3 mol% tetraethyleneglycol diacrylate cross-linked p(HEMA-co-PEGMA-co-HMMA-co-SPA)-p(Py-co-PyBA) electroconductive hydrogels. The device was then coated with a bioactive hydrogel layer containing phosphoryl choline and polyethylene glycol pendant moieties [p(HEMA-co-PEGMA-co-HMMA-co-MPC)] for indwelling biocompatibility. In vitro cell proliferation and viability studies confirmed both polymers to be non-cytotoxic; however, PPy-based electroconductive hydrogels showed greater RMS 13 and PC12 proliferation compared to controls. The glucose and lactate biotransducers exhibited linear dynamic ranges of 0.10–13.0 mM glucose and 1.0–7.0 mM and response times (t 95) of 50 and 35–40 s, respectively. Operational stability gave 80% of the initial biosensor response after 5 days of continuous operation at 37 °C. Preliminary in vivo studies in a Sprague–Dawley hemorrhage model showed tissue lactate levels to rise more rapidly than systematic lactate. The potential for an implantable biochip that supports telemetric reporting of intramuscular lactate and glucose levels allows the refinement of resuscitation approaches for civilian and combat trauma victims.  相似文献   

5.
We report here a novel strategy for fabrication of SiO2 hollow microspheres with urchin-like structure based on templates from directed assembly of block copolymer, poly(2-cinnamoyloxyethyl acrylate)-block-poly(acrylic acid-co-styrene) (PCEA-b-P(AA-co-Sty)). The structures of template from directed assembly of copolymers as well as that of as-obtained hollow SiO2 microspheres were observed by a combination technique of optical microscope, scanning electron microscope, and transmission electron microscopy. It is shown that the hollow microspheres consist of aligned SiO2 “spines” radially growing from the core which are induced a favorable growth by the structures of the template from directed assembly of PCEA-b-P(AA-co-Sty). The “spine” density of the hollow SiO2 sphere can be tuned by controlling the structure of the copolymer with different hydrolysis degree of poly(tert-butyl-acrylate) to PAA, and the ultimate size of the resultant SiO2 hollow sphere can be adjusted by solvent and temperature in the sol–gel process, etc.  相似文献   

6.
Hydrogels with mechanical elasticity and conductivity are ideal materials in wearable devices. However, traditional hydrogels are fragile upon mechanical loading and lose functions in climate change because the internal water undergoes freeze and dehydration. Herein, we synthesize stable emulsions at high and low temperatures by introducing glycerol into the W/W emulsions. Then the high-stable emulsions are used as templates to produce the freestanding emulsion gels with enhanced mechanical strength and conductivity. The introduction of glycerol endows emulsions and emulsion gels with high and low temperature resistance (−20 to 90 °C). The fabricated strain sensors based on emulsion gels show high sensitivity (gauge factor=6.240), high stretchability (1081 %), fatigue resistance, self-healing and adhesion properties, realizing the repeatable and accurate detection of various human motions. These high-performance and eco-friendly emulsion gels can be promising candidates for next-generation artificial skin and human-machine interface.  相似文献   

7.
A number of synthetic hydrogels suffer from low mechanical strength. Despite of the recent advances in the fabrication of tough hydrogels, it is still a great challenge to simultaneously construct high stretchability, and self-adhesive and self-healing capability in a hydrogel. Herein, a new type of double network hydrogel was prepared based on irreversible cross-linking of polyacrylamide chains and Schiff-base reversible cross-linking between glycidyl methacrylate-grafted ethylenediamine and oxidized sodium alginate (OSA). The combination of both cross-linkings and their synergistic effect provided a novel hydrogel with high strength, stretchable, rapid self-healing, and self-adhesiveness to different material. Besides, the hydrogels with diverse OSA content could maintain their original shapes after loading–unloading tensile test. The resulting hydrogel has a great potential in various fields for supporting and load-bearing substance.  相似文献   

8.
Here we report a facile strategy of fabricating multifunctional polyacrylamide(PAM) hydrogels based on hybrid graphene oxide (GO) sheets and carbon nanotubes (CNTs). Compared to original PAM hydrogels cross-linked chemically with N,N-methylenebisacrylamide (BIS), the hybrid hydrogels exhibit high mechanical strength (strength > 90?kPa and broken strain > 2000%), well adhesion, environmental stability, dye-loading capacity, and excellent self-healing property. This study provides a new insight for the preparation of functionalized hydrogels with carbon nano-materials, and the resultant material shows very promising performance for a range of applications.  相似文献   

9.
Hydrogel-based strain sensors have been attracting immense attention for wearable electronic devices owing to their intrinsic soft characteristics and flexibility. However, developing hydrogel sensors with hightensile strength, stretchability, and strain sensitivity remains a great challenge. Herein, we report a technique to synthesize highly sensitive hydrogel-based strain sensors by integrating carbon nanofibers (CNFs) with a double-network (DN) polymer hydrogel matrix comprising of a physically cross-linked agar network and a covalently cross-linked polyacrylamide (PAAm) network. The resultant nanocomposite sensors display superior piezoresistive sensitivity with a hightrue gauge factor (GFT = 1.78) at an ultrahigh strain of 1,000%, a fast response time and linear correlation of ln(R/R0) and ln(L/L0) up to 1,000% strain. Most significantly, these sensors possess highmechanical strength (~0.6 MPa) and superb durability (>1,000 cycles at strain of 100%), stemming from the effective energy dissipation mechanism of the first agar network acting as sacrificial bonds and the CNFs serving as dynamic nanofillers. The combination of highstrain sensitivity and ultrahigh stretchability of hydrogel sensors makes it possible to sense both small mechanical deformations induced by human motions and large strain up to 1,000%.  相似文献   

10.
The spectroscopic and photophysical properties of N-nonyl acridine orange – a metachromatic dye useful as a mitochondrial probe in living cells – are reported in water and microheterogeneous media: anionic sodium dodecylsulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and neutral octylophenylpolyoxyethylene ether (TX-100). The spectral changes of N-nonyl acridine orange were observed in the presence of varying amount of SDS, CTAB and TX-100 and indicated formation of a dye–surfactant complex. The spectral changes were also regarded to be caused by the incorporation of dye molecules to micelles. It was proved by calculated values Kb and f in the following order: Kb TX-100 > Kb CTAB > Kb SDS and fTX-100 > fCTAB > fSDS. NAO binds to the micelle regardless the micellar charge. There are two types of interactions between NAO and micelles: hydrophobic and electrostatic. The hydrophobic interactions play a dominant role in binding of the dye to neutral TX-100. The unexpected fact of the binding NAO to cationic CTAB can be explained by a dominant role of hydrophobic interactions over electrostatic repulsion. Therefore, the affinity of NAO to CTAB is smaller than TX-100. Electrostatic interactions play an important role in binding of NAO to anionic micelles SDS. We observed a prolonged fluorescence lifetime after formation of the dye–surfactant complex τSDS > τTX-100 > τCTAB > τwater, the dye being protected against water in this environment. TX-100 is found to stabilize the excited state of NAO which is more polar than the ground state. Spectroscopic and photophysical properties of NAO will be helpful for a better understanding of the nature of binding and distribution inside mammalian cells.  相似文献   

11.
The volume phase transition of nonionic hydrogels was controlled with a very small amount of variation (pinpoint variation) of the side chains far from the main chain. The copolymer hydrogels poly(methacryloyl‐alanine methyl ester‐co‐methacryloyl‐alanine ethyl ester) [poly(MA‐Ala‐OMe‐co‐MA‐Ala‐OEt)] and poly(methacryloyl‐alanine alkylamide‐co‐methacryloyl‐alanine ethyl ester) [poly(MA‐Ala‐NR2co‐MA‐Ala‐OEt)] were studied to investigate how pinpoint variation controls the volume phase transition. All copolymer hydrogels showed a volume phase transition from a swollen phase to a collapsed phase at a definite MA‐Ala‐OEt content at a specific temperature. The MA‐Ala‐OEt content at the midpoint of the transition linearly decreased with elevation of the temperature, and the decrease was larger for poly(MA‐Ala‐OMe‐co‐MA‐Ala‐OEt) than for poly(MA‐Ala‐NR2co‐MA‐Ala‐OEt). These results suggest that the association of the side chains controlling the swelling character of the hydrogels depends on the interacting ester–ester or ester–amide groups, and the former is larger than the latter. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 56–62, 2001  相似文献   

12.
This study focuses on the preparation of stretchable zwitterionic poly(sulfobetaine methacrylate) (PSBMA) hydrogels. To address the weak mechanical properties of chemically crosslinked PSBMA hydrogels, a physical crosslinking method utilizing hydrophobic interactions to crosslink hydrogels to approach tough properties is developed. Here, sodium dodecyl sulfate (SDS)-based micelle is used as a physical crosslinker to prepare physically crosslinked PSBMA (PSBMAphy) hydrogels, and ethylene glycol dimethylacrylate (EGDMA) is used to prepare a control group of chemically crosslinked PSBMA (PSBMAchem) hydrogels. The mechanical properties of the two hydrogels are compared, and PSBMAphy hydrogels exhibit greater flexibility than the PSBMAchem hydrogels. When the PSBMAphy hydrogels are subjected to external forces, the micelles act as dynamic crosslinking sites, allowing the stress to disperse and prevent the hydrogel from breaking. In addition, the PSBMAphy hydrogels have nearly 100% self-healing properties within 2.5 min. The PSBMAphy hydrogels exhibit usable adhesive properties to porcine skin and subcutis. MTT and hemolysis tests show that the PSBMAphy hydrogels have excellent biocompatibility and hemocompatibility. This study proposes that the multifunctional PSBMAphy hydrogels with micelles will be potential to carry drugs for use in drug delivery systems in the future.  相似文献   

13.
Temperature-sensitive poly(N-tert-butylacrylamide-co-acrylamide) [P(NTBA-co-AAm)] hydrogels were synthesized by free-radical copolymerization in a water–methanol mixture using three types of crosslinkers: 1,2-ethyleneglycol dimethacrylate, N,N-methylenebisacrylamide, and 1,3-butandiol dimethacrylate. These thermosensitive hydrogels were swollen to equilibrium in water at 20°C and examined by gravimetric measurements. The influence of type and content of crosslinkers on the swelling ratio, the polymer–solvent interaction parameter (χ), the average molecular mass between crosslinks and the effective crosslinking density (ν E) of the hydrogels were reported and discussed. The swelling process in water was found to be non-Fickian diffusion. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter for the hydrogels were determined by using the Flory–Rehner theory based on the phantom network model of swelling equilibrium. Negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature-sensitive property in water; that is, swelling at a lower temperature and shrinking at a higher temperature. The temperature-reversibility and on–off switching properties of the P(NTBA-co-AAm) hydrogels may be considered as good candidates for designing novel drug-delivery systems.  相似文献   

14.
《Solid State Sciences》2012,14(9):1355-1360
Single crystals of K2[Co(1−x)Nix(H2O)6] (C8H5O4)4·4H2O (x = 0.25) (PCNHP), a semiorganic black colored transparent crystal of size ∼20 × 13 × 4 mm3, are grown from an aqueous solution of potassium hydrogen phthalate enriched with cobalt chloride and nickel chloride by slow evaporation solution growth technique at room temperature. Structural analysis by single crystal X-ray diffraction reveals that the crystal belongs to monoclinic system with space group P21/c and the cell parameters are a = 10.41(3) Å, b = 6.84(2) Å, c = 29.46(9) Å, Z = 4. Incorporation of both Co(II) and Ni(II) into the potassium hydrogen phthalate (KHP) crystal lattice is well confirmed by EDS and chemical tests. Powder XRD profiles indicate the crystallinity and FT-IR studies reveal the vibrational patterns. The UV–vis optical absorption spectrum of PCNHP shows the lower optical cut-off at ∼300 nm and the crystal was transparent in the entire visible region. The crystalline perfection of the grown crystal analysed by high-resolution X-ray diffraction (HRXRD) analysis reveals that the diffraction curve (DC) contains multi-peaks with low angular spread indicating the possibility of low angle structural grain boundaries. Scanning electron microscope (SEM) studies indicate the structure defect centers. The dielectric, thermal and mechanical behaviors of the specimen were also investigated.  相似文献   

15.
In the present study, SrO doped Yttrium titanate pyrochlore was synthesized using solid state reaction technique. The sintering characteristics, crystal structure, thermal and conductivity behavior of doped and undoped pyrochlores have been studied to find their suitability in solid oxide fuel cells (SOFC). The as-prepared samples were characterized using X-ray diffraction (XRD), Fourier-Transform-Infrared spectroscopy (FT-IR), thermal-gravimetric analysis (TGA) and ac conductivity up to 900 °C. The results are discussed in light of oxygen vacancy formation and structural disordering. Undoped and doped yttrium titanate with SrO (x = 0.1) exhibits single Y2Ti2O7 phase with relative density of 94%. It was observed that further doping of SrO (x = 0.2–0.4) leads to formation of Y2Ti2O7 phase along with SrTiO3 phase. Excessive SrO (x = 0.4) results in increase in ionic conductivity to 1.50 × 10−1 S cm−1 whereas it impedes the densification process with relative density of 85%.  相似文献   

16.
Temperature sensitive poly{N‐[3‐(dimethylaminopropyl)]methacrylamide‐co‐acrylamide} [P(DMAPMA‐co‐AAm)] hydrogels were prepared by the free‐radical crosslinking copolymerization of corresponding monomers in water with N,N‐methylenebisacrylamide as the crosslinker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylethylenediamine as the activator. The swelling equilibrium of the P(DMAPMA‐co‐AAm) hydrogels was investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate and the cationic surfactant dodecyltrimethylammonium bromide. In pure water, regardless of the amount of N,N‐methylenebisacrylamide, the P(DMAPMA‐co‐AAm) hydrogels showed a discontinuous phase transition between 30 and 36 °C. However, the transition temperature changed from discontinuous to continuous with the addition of surfactants; this was ascribed to the conversion of nonionic P(DMAPMA‐co‐AAm) hydrogels into polyelectrolyte hydrogels due to the binding of surfactants through hydrophobic interactions. Additionally, the concentrations of free sodium dodecyl sulfate and dodecyltrimethylammonium bromide ions were measured at different temperatures by conductometry, and it was found that the electric conductivity of the P(DMAPMA‐co‐AAm)–surfactant systems depended strongly on the swelling ratio; most notably, it changed drastically near the phase‐transition temperature of the P(DMAPMA‐co‐AAm) hydrogel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1645–1652, 2006  相似文献   

17.
The production of flexible polyurethane foams (FPF) with good acoustical performance to control sound and noise and incorporating bio/recycled raw materials is an interesting alternative to conventional acoustic absorbent materials. In this sense, biobased polyols like glycerol (GLY) or hydroxylated methyl esters derived from tung oil (HMETO) as multifunctional polyols, and waste tire particles (WTP) as fillers of low thermal conductivity and good capability for acoustical absorption, are prospective feedstocks for FPF preparation. In this work, FPF were prepared by adding different amounts of these components to a formulation based on a commercial polyether polyol. Results of scanning electron microscopy (SEM) analysis, compression tests and normal-incidence sound absorption coefficient (αN) measurements are presented and discussed. The addition of WTP or GLY to the commercial formulation enhanced both the modulus and yield stress of the obtained FPF in all cases. Moreover, a high recovery of the applied strain (>90%) was attained 24 h after the compression tests. On the other hand, the normal-incidence sound absorption coefficient, αN, reached high values mostly at the highest evaluated frequencies (αN ∼0.62–0.89 at 2000 Hz and αN ∼0.70–0.91 at 5000 Hz). SEM micrographs revealed that the foams obtained present a combination of open and closed cell structure and both the modifiers and particles tend to decrease the cell size.  相似文献   

18.
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
To combine temperature and pH sensitive capabilities, N-isopropylmaleamic acid (NIPMMA), having isopropylamide group and weakly acidic group (–COOH), was synthesized and used as a precursor for fabrication of temperature and pH sensitive hydrogels. In this paper, a new class of intelligent hydrogel with pH and temperature sensitivity originated from only one precursor (NIPMMA) was designed and demonstrated. Resultant poly(NIPMMA-co-acrylonitrile) [P(NIPMMA-co-AN)] hydrogels were characterized by Fourier transform infrared spectroscopy for structural determination and scanning electron microscope for morphology observation. Their temperature and pH sensitive behaviors were also examined in detail. The data obtained exhibited that the magnitude of sensitive properties of P(NIPMMA-co-AN) hydrogels depended on the composition ratio of two precursors. By increasing the content of NIPMMA, the temperature and pH sensitive capabilities of P(NIPMMA-co-AN) hydrogels were improved correspondingly since AN has no sensitivity upon temperature or pH changes.  相似文献   

20.
Hexagonal Li2MgSnO4 compound was synthesized at 800 °C using Urea Assisted Combustion (UAC) method and the same has been exploited as an anode material for lithium battery applications. Structural investigations through X-ray diffraction, Fourier Transform Infra Red spectroscopy and 7Li NMR (Nuclear Magnetic Resonance spectroscopy) studies demonstrated the existence of hexagonal crystallite structure with a = 6.10 and c = 9.75. An average crystallite size of ∼400 nm has been calculated from PXRD pattern, which was further evidenced by SEM images. An initial discharge capacity of ∼794 mA h/g has been delivered by Li2MgSnO4 anode with an excellent capacity retention (85%) and an enhanced coulombic efficiency (97–99%). Further, the Li2MgSnO4 anode material has exhibited a steady state reversible capacity of ∼590 mA h/g even after 30 cycles, thus qualifying the same for use in futuristic lithium battery applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号