首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High quantum yield triplets, populated by initially prepared excited singlets, are desired for various energy conversion schemes in solid working compositions like porous MOFs. However, a large disparity in the distribution of the excitonic center of mass, singlet-triplet intersystem crossing (ISC) in such assemblies is inhibited, so much so that a carboxy-coordinated zirconium heavy metal ion cannot effectively facilitate the ISC through spin-orbit coupling. Circumventing this sluggish ISC, singlet fission (SF) is explored as a viable route to generating triplets in solution-stable MOFs. Efficient SF is achieved through a high degree of interchromophoric coupling that facilitates electron super-exchange to generate triplet pairs. Here we show that a predesigned chromophoric linker with extremely poor ISC efficiency (kISC) but form triplets in MOF in contrast to the frameworks that are built from linkers with sizable kISC but . This work opens a new photophysical and photochemical avenue in MOF chemistry and utility in energy conversion schemes.  相似文献   

2.
We demonstrate a general strategy for the synthesis of ordered bicontinuous-structured metal organic frameworks (MOFs) by using polymer cubosomes (PCs) with a double primitive structure (Im m symmetry) as the template. The filling of MOF precursors in the open channel of PCs, followed by their coordination and removal of the template, generates MOF cubosomes with a single primitive topology (Pm m) and average mesopore diameters of 60–65 nm. Mechanism study reveals that the formation of ZIF-8 cubosomes undergoes a new MOF growth process, which involves the formation of individual MOF seeds in the template, their growth and eventual fusion into the cubosomes. Their growth kinetics follows the Avrami equation with an Avrami exponent of n=3 and a growth rate of k=1.33×10−4, indicating their fast 3D heterogeneous growth mode. Serving as a bioreactor, the ZIF-8 cubosomes show high loading of trypsin enzyme, leading to a high catalytic activity in the proteolysis of bovine serum albumin.  相似文献   

3.
A one-stone, two-bird method to integrate the soft porosity and electrical properties of distinct metal–organic frameworks (MOFs) into a single material involves the design of conductive-on-insulating MOF (cMOF-on-iMOF) heterostructures that allow for direct electrical control. Herein, we report the synthesis of cMOF-on-iMOF heterostructures using a seeded layer-by-layer method, in which the sorptive iMOF core is combined with chemiresistive cMOF shells. The resulting cMOF-on-iMOF heterostructures exhibit enhanced selective sorption of CO2 compared to the pristine iMOF (298 K, 1 bar, S from 15.4 of ZIF-7 to 43.2–152.8). This enhancement is attributed to the porous interface formed by the hybridization of both frameworks at the molecular level. Furthermore, owing to the flexible structure of the iMOF core, the cMOF-on-iMOF heterostructures with semiconductive soft porous interfaces demonstrated high flexibility in sensing and electrical “shape memory” toward acetone and CO2. This behavior was observed through the guest-induced structural changes of the iMOF core, as revealed by the operando synchrotron grazing incidence wide-angle X-ray scattering measurements.  相似文献   

4.
A new thorium metal-organic framework (MOF), Th(OBA)2, where OBA is 4,4′-oxybis(benzoic) acid, has been synthesized hydrothermally in the presence of a range of nitrogen-donor coordination modulators. This Th-MOF, described herein as GWMOF-13, has been characterized by single-crystal and powder X-ray diffraction, as well as through a range of techniques including gas sorption, thermogravimetric analysis (TGA), solid-state UV/Vis and luminescence spectroscopy. Single-crystal X-ray diffraction analysis of GWMOF-13 reveals an interesting, high symmetry (cubic Ia d) structure, which yields a novel srs-a topology. Most notably, TGA analysis of GWMOF-13 reveals framework stability to 525 °C, matching the thermal stability benchmarks of the UiO-66 series MOFs and zeolitic imidazolate frameworks (ZIFs), and setting a new standard for thermal stability in f-block based MOFs.  相似文献   

5.
Traditional MOF e-CRR, constructed from catalytic linkers, manifest a kinetic bottleneck during their multi-electron activation. Decoupling catalysis and charge transport can address such issues. Here, we build two MOF/e-CRR systems, CoPc@NU-1000 and TPP(Co)@NU-1000, by installing cobalt metalated phthalocyanine and tetraphenylporphyrin electrocatalysts within the redox active NU-1000 MOF. For CoPc@NU-1000, the e-CRR responsive CoI/0 potential is close to that of NU-1000 reduction compared to the TPP(Co)@NU-1000. Efficient charge delivery, defined by a higher diffusion (Dhop=4.1×10−12 cm2 s−1) and low charge-transport resistance ( =59.5 Ω) in CoPC@NU-1000 led FECO=80 %. In contrast, TPP(Co)@NU-1000 fared a poor FECO=24 % (Dhop=1.4×10−12 cm2 s−1 and =91.4 Ω). For such a decoupling strategy, careful choice of the host framework is critical in pairing up with the underlying electrochemical properties of the catalysts to facilitate the charge delivery for its activation.  相似文献   

6.
Quantum chemical calculations on model copper paddlewheel (CPW) complexes of general formula [Cu2(μ2-O2CR)4L2] establish two local coordination geometries at the metal centers depending on the balance between equatorial and axial ligand fields. When the equatorial field is stronger than the axial field (large ligand field asymmetry), dominates the stereochemical activity of the d9 shell resulting in a relatively rigid, “orbitally directed” planar or square pyramidal structure. However, if the axial field is significantly increased, or the equatorial field moderately weakened, a small ligand field asymmetry results and both and are involved in the stereochemical activity. This results in a “plastic,” distorted trigonal bipyramidal geometry where the former axial ligand moves into one of the original four equatorial positions. Linkers already used to synthesize zinc-dabco MOFs (dabco = 1,4-diazabicyclo[2.2.2]octane) are shown to generate plastic CPW secondary building unit analogs with potential implications for conferring breathing behavior for MOFs which would currently be assumed to be rigid. © 2019 Wiley Periodicals, Inc.  相似文献   

7.
Gaining a fundamental understanding of charge transfer mechanisms in three-dimensional Metal–Organic Frameworks (MOFs) is crucial to the development of electroactive and conductive porous materials. These materials have potential in applications in porous conductors, electrocatalysts and energy storage devices; however the structure–property relationships pertaining to charge transfer and its quantification are relatively poorly understood. Here, the cofacial Cd(ii)-based MOF [Cd(BPPTzTz)(tdc)]·2DMF (where BPPTzTz = 2,5-bis(4-(pyridin-4-yl)phenyl)thiazolo[5,4-d]thiazole, tdc2− = 2,5-thiophene dicarboxylate) exhibits Intervalence Charge Transfer (IVCT) within its three-dimensional structure by virtue of the close, cofacial stacking of its redox-active BPPTzTz ligands. The mixed-valence and IVCT properties are characterised using a combined electrochemical, spectroelectrochemical and computational approach. Single crystal electronic absorption spectroscopy was employed to obtain the solid-state extinction coefficient, enabling the application of Marcus–Hush theory. The electronic coupling constant, Hab, of 145 cm−1 was consistent with the localised mixed-valence properties of both this framework and analogous systems that use alternative methods to obtain the Hab parameter. This work demonstrates the first report of the successful characterisation of IVCT in a MOF material using single crystal electronic absorption spectroscopy and serves as an attractive alternative to more complex methods due to its simplicity and applicability.

Gaining a fundamental understanding of charge transfer mechanisms in three-dimensional Metal–Organic Frameworks (MOFs) is crucial to the development of electroactive and conductive porous materials.  相似文献   

8.
Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H2O (ΔG ) and hydrogen (ΔGH*), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm?2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H2SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm?2.  相似文献   

9.
The preparation of novel technetium oxides, their characterization and the general investigation of technetium chemistry are of significant importance, since fundamental research has so far mainly focused on the group homologues. Whereas the structure chemistry of technetium in strongly oxidizing media is dominated by the anion, our recent investigation yielded the new anion. Brown single crystals of Ba[TcO3N] were obtained under hydrothermal conditions starting from Ba(OH)2 ⋅ 8H2O and NH4[TcO4] at 200 °C. crystallizes in the monoclinic crystal system with the space group P21/n (a=7.2159(4) Å, b=7.8536(5) Å, c=7.4931(4) Å and β=104.279(2)°). The crystal structure of consists of isolated tetrahedra, which are surrounded by Ba2+ cations. XANES measurements complement the oxidation state +VII for technetium and Raman spectroscopic experiments on Ba[TcO3N] single crystals exhibit characteristic Tc−O and Tc−N vibrational modes.  相似文献   

10.
We report the development of photosensitizing arrays based on conductive metal–organic frameworks (MOFs) that enable light harvesting and efficient charge separation. Zn2TTFTB (TTFTB = tetrathiafulvalene tetrabenzoate) MOFs are deposited directly onto TiO2 photoanodes and structurally characterized by pXRD and EXAFS measurements. Photoinduced interfacial charge transfer dynamics are investigated by combining time-resolved THz spectroscopy and quantum dynamics simulations. Sub-600 fs electron injection into TiO2 is observed for Zn2TTFTB–TiO2 and is compared to the corresponding dynamics for TTFTB–TiO2 analogues that lack the extended MOF architecture. Rapid electron injection from the MOF into TiO2 is enhanced by facile migration of the hole away from the interfacial region. Holes migrate through strongly coupled HOMO orbitals localized on the tetrathiafulvalene cores of the columnar stacks of the MOF, whereas electrons are less easily transferred through the spiral staircase arrangement of phenyl substituents of the MOF. The reported findings suggest that conductive MOFs could be exploited as novel photosensitizing arrays in applications to slow, and thereby make difficult, photocatalytic reactions such as those required for water-splitting in artificial photosynthesis.

We report the development of photosensitizing arrays based on conductive metal–organic frameworks (MOFs) that enable light harvesting and efficient charge separation.  相似文献   

11.
We report the crystal structure of Ba(CN3H4)2 as synthesized from liquid ammonia. Structure solution based on X-ray diffraction data suffers from a severe pseudo-tetragonal problem due to extreme scattering contrast, so the true monoclinic symmetry is detectable only from neutron powder diffraction patterns, and structure solution and refinement was greatly aided by density-functional theory. The symmetry lowering is due to slight deviations of the guanidinate anion from the mirror plane in space group P b2, a necessity of hydrogen bonding. At 300 K, barium guanidinate crystallizes in P21/c with a=6.26439(2) Å, b=16.58527(5) Å, c=6.25960(2) Å, and a monoclinic angle of β=90.000(1)°. To improve the data-to-parameter ratio, anisotropic displacement parameters from first-principles theory were incorporated in the neutron refinement. Given the correct structural model, the positional parameters of the heavy atoms were also refinable from X-ray diffraction of a twinned crystal. The two independent guanidinate anions adopt the all-trans- and the anti-shape. The Ba cation is coordinated by eight imino nitrogens in a square antiprism with Ba−N contacts between 2.81 and 3.04 Å. The IR and Raman spectra of barium guanidinate were compared with DFT-calculated phonon spectra to identify the vibrational modes.  相似文献   

12.
Understanding the correlation between crystal structure and thermal conductivity in semiconductors is very important for designing heat-transport-related devices, such as high-performance thermoelectric materials and heat dissipation in micro-nano-scale devices. In this work, the lattice thermal conductivity ( ) of the cage-like compounds Cu3VSe4 and Cu3NbSe4 was investigated by experimental measurements and first-principles calculations. The experimental of Cu3NbSe4 is approximately 25 % lower than that of Cu3VSe4 at 300 K. The relevant important physical parameters, including the sound velocity, heat capacity, weighted phonon phase space (W), and third-order force constants along with atomic mass were theoretically analyzed. It is found that W is the dominant parameter in determining the , and the other factors only play a minor role. The physical origin is the relatively “soft” lattice of Cu3NbSe4 with heavier atomic mass. This research provides deep insight into the correlation between the thermal conductivity and crystal structure and paves the way for discovering high-performance thermal management device and thermoelectric materials with intrinsically low .  相似文献   

13.
A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well‐defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g?1 and a high electric conductivity of 0.125 S cm?1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.  相似文献   

14.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N−1, and pyroelectric coefficient of p≈25.8 μC m−2 K−1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   

15.
We present herein the synthesis, crystal structure, and electric and magnetic properties of the spin-crossover salt [Mn(5-Cl-sal-N-1,5,8,12)]TCNQ1.5 ⋅ 2 CH3CN ( I ), where 5-Cl-sal-N-1,5,8,12=N,N′-bis(3-(2-oxy-5-chlorobenzylideneamino)propyl)-ethylenediamine, containing distinct conductive and magnetic blocks along with acetonitrile solvent molecules. The MnIII complex with a Schiff-base ligand, [Mn(5-Cl-sal-N-1,5,8,12)]+, acts as the magnetic unit, and the π-electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) is the conducting unit. The title compound ( I ) exhibits semiconducting behavior with room temperature conductivity σRT≈1×10−4 ohm−1 cm−1 and activation energy Δ ≈0.20 eV. In the temperature range 73–123 K, it experiences a hysteretic phase transition accompanied by a crossover between the low-spin S=1 and high-spin S=2 states of MnIII and changes in bond lengths within the MnN4O2 octahedra. The pronounced shrinkage of the basal Mn−N bonds in I at the spin crossover suggests that the d orbital is occupied/deoccupied in this transition. Interestingly, the bromo isomorphic counterpart [Mn(5-Br-sal-N-1,5,8,12)]TCNQ1.5 ⋅ 2 CH3CN ( II ) of the title compound evidences no spin-crossover phenomena and remains in the high-spin state in the temperature range 2–300 K. Comparison of the chloro and bromo compounds allows the thermal and spin-crossover contributions to the overall variation in bond lengths to be distinguished. The difference in magnetic behavior of these two salts has been ascribed to intermolecular supramolecular effects on the spin transition. Discrete hydrogen bonding exists between cations and cations and anions in both compounds. However, the hydrogen bonding in the crystals of II is much stronger than in I . The relatively close packing arrangement of the [Mn(5-Br-sal-N-1,5,8,12)]+ cations probably precludes their spin transformation.  相似文献   

16.
The layered compound Sn2.8(4)Bi20.2(4)Se27 exhibits an extraordinarily long-periodic 150R stacking sequence. The crystal structure contains three different building blocks, which form upon the addition of Sn to a Bi-rich bismuth selenide. Sn-doped Bi2 double (“2”) layers similar to those in elemental bismuth, Sn0.3Bi1.7Se3 quintuple (“5”) layers and Sn0.4Bi2.6Se4 septuple (“7”) layers are arranged in a 7525757525|7525757525|7525757525 sequence, which corresponds to a structure with a=4.1819(4) and c=282.64(6) Å in space group R m. The structure of a microcrystal was determined using microfocused synchrotron radiation and refined as a formally commensurately modulated structure in (3+1)D superspace (superspace group R m(00γ)00), with a trivial basic structure that contains just one atom. The stacking sequence as well as the cation distribution are confirmed by aberration-corrected scanning transmission electron microscopy (STEM) in combination with chemical mapping by X-ray spectroscopy with atomic resolution. Stacking faults are not typical but have been observed occasionally.  相似文献   

17.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N?1, and pyroelectric coefficient of p≈25.8 μC m?2 K?1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   

18.
Controlling the direction of molecular-scale pores enables the accommodation of guest molecular-scale species with alignment in the desired direction, allowing for the development of high-performance mechanical, thermal, electronic, photonic and biomedical organic devices (host–guest approach). Regularly ordered 1D nanochannels of metal–organic frameworks (MOFs) have been demonstrated as superior hosts for aligning functional molecules and polymers. However, controlling the orientation of MOF films with 1D nanochannels at commercially relevant scales remains a significant challenge. Here, we report the fabrication of macroscopically oriented films of Cu-based pillar-layered MOFs having regularly ordered 1D nanochannels. The direction of 1D nanochannels is controllable by optimizing the crystal growth process; 1D nanochannels align either perpendicular or parallel to substrates, offering molecular-scale pore arrays for a macroscopic alignment of functional guest molecules in the desired direction. Due to the fundamental interest and widespread technological importance of controlling the alignment of functional molecules and polymers in a particular direction, orientation-controllable MOF films will open up the possibility of realising the potential of MOFs in advanced technologies.

Orientation-controlled Cu2(Linker)2DABCO MOF films on macroscopic scales are fabricated for the development of high-performance devices; the direction of 1D nanochannels is controllable either perpendicular or parallel to substrates.  相似文献   

19.
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive activation. Here, we studied the role of the substrate in the key elementary reaction leading to activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme Fe center through thermoneutral H2O reorientation and exothermic binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme Fe sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme Fe in agreement with a strategy that avoids unproductive activation.  相似文献   

20.
The experimental and computational characterization of a series of dialkylterphenyl phosphines, PR2Ar′ is described. The new P-donors comprise five compounds of general formula PR2Ar (R=Me, Et, iPr, c-C5H9 and c-C6H11); Ar = 2,6-C6H3-(3,5-C6H3-(CMe3)2)2), and another five PR2Ar′ phosphines containing the bulky alkyl groups iPr, c-C5H9 or c-C6H11, in combination with Ar′=Ar , Ar , or Ar ( L1 – L10 ). Steric and electronic parameters have been determined computationally and from IR and X-ray data obtained for the phosphines and for some derivatives, including tricarbonyl and dicarbonyl nickel complexes, Ni(CO)3(PR2Ar′) and Ni(CO)2(PR2Ar′). In the solid state, the free phosphines PR2Ar′ adopt one of the three possible structures formally related by rotation around the Cipso−P bond. Details on their relative energies and on the influence of the free phosphine structure on its coordination chemistry towards Ni(CO)n (n = 2, 3) fragments has been obtained by experimental and computational methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号