首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The agronomic benefit of biochar has attracted widespread attention to biochar‐based fertilizers. However, the inevitable presence of polycyclic aromatic hydrocarbons in biochar is a matter of concern because of the health and ecological risks of these compounds. The strong adsorption of polycyclic aromatic hydrocarbons to biochar complicates their analysis and extraction from biochar‐based fertilizers. In this study, we optimized and validated a method for determining the 16 priority polycyclic aromatic hydrocarbons in biochar‐based fertilizers. Results showed that accelerated solvent extraction exhibited high extraction efficiency. Based on a Box–Behnken design with a triplicate central point, accelerated solvent extraction was used under the following optimal operational conditions: extraction temperature of 78°C, extraction time of 17 min, and two static cycles. The optimized method was validated by assessing the linearity of analysis, limit of detection, limit of quantification, recovery, and application to real samples. The results showed that the 16 polycyclic aromatic hydrocarbons exhibited good linearity, with a correlation coefficient of 0.996. The limits of detection varied between 0.001 (phenanthrene) and 0.021 mg/g (benzo[ghi]perylene), and the limits of quantification varied between 0.004 (phenanthrene) and 0.069 mg/g (benzo[ghi]perylene). The relative recoveries of the 16 polycyclic aromatic hydrocarbons were 70.26–102.99%.  相似文献   

2.
Accumulation of chlorpyrifos (CP), a pesticide, causes a significant environmental problem in food, surface/ground waters further to human health. The removal of the CP pollutant in surface/wastewater could be achieved by biochar due to the improved physical and chemical properties. In this work, the CP removal capacities of biochar samples derived from walnut shells at various temperatures from 450 to 900 °C were investigated. The experiments were performed as laboratory batch type study and the adsorption efficiency was determined at various conditions such as adsorbent dosage (10–500 mg/L), sorbate concentrations (100–1500 µg/L), contact time (0–300 min), initial pH (3–10), and the number of recycle.By subtracting the pyrolysis temperature from 450 °C to 900 °C, the surface areas were found to increase from 12.9 m2/g to 353.3 m2/g, respectively.The 143 experimental data were evaluated by a pair of kinetics and isotherm models and the Adaptive Neural Fuzzy Inference System (ANFIS). The developed ANFIS model was 98.56% successful in predicting the CP removal efficiency depending on the adsorption conditions. Walnut Shell Biochar (WSBC) can be applied for CP adsorption with 86.64% removal efficiency under optimum adsorption conditions (adsorbent = 250 µg/L, sorbate = 1000 µg/L, pH = 7.07 and contact time 15 min) thanks to its improved porosity. It was determined that the biochar samples could be reused 5 times. Equilibrium adsorption was observed to conform to the Langmuir isotherm, and the maximum adsorption capacity for WSBC@900 was 3.536 mg/g.  相似文献   

3.
Biochar has been explored as a sorbent for contaminants, soil amendment and climate change mitigation tool through carbon sequestration. Through the optimization of the pyrolysis process, biochar can be designed with qualities to suit the intended uses. Biochar samples were prepared from four particle sizes (100–2000 µm) of three different feedstocks (oak acorn shells, jift and deseeded carob pods) at different pyrolysis temperatures (300–600 °C). The effect of these combinations on the properties of the produced biochar was studied. Biochar yield decreased with increasing pyrolysis temperature for all particle sizes of the three feedstocks. Ash content, fixed carbon, thermal stability, pH, electrical conductivity (EC), specific surface area (SSA) of biochar increased with increasing pyrolysis temperature. Volatile matter and pH value at the point of zero charge (pHpzc) of biochar decreased with increasing pyrolysis temperature. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the surface of the biochar was rich with hydroxyl, phenolic, carbonyl and aliphatic groups. Methylene blue (MB) adsorption capacity was used as an indicator of the quality of the biochar. Artificial neural networks (ANN) model was developed to predict the quality of the biochar based on operational conditions of biochar production (parent biomass type, particle size, pyrolysis temperature). The model successfully predicted the MB adsorption capacity of the biochar. The model is a very useful tool to predict the performance of biochar for water treatment purposes or assessing the general quality of a design biochar for specific application.  相似文献   

4.
田孟魁  冯喜兰 《中国化学》2008,26(7):1251-1256
建立了顶空固相微萃取联结气相色谱-电子捕获检测器(HS-SPME-GC-ECD)测定水中多溴联苯醚的方法。制作了多壁碳纳米管涂层固相微萃取探头。优化了萃取时间,萃取温度,搅拌速度,顶空体积,溶液的pH,离子强度及有机溶剂等影响萃取效率的各种因素。比较了室温和100 ℃顶空萃取和直接萃取的效率。结果表明,室温下直接萃取比顶空萃取的效率高2-4倍,而在100 ℃时顶空萃取比直接萃取的效率高1-8倍。除BDE-154外,无论直接萃取还是顶空萃取,100 ℃时的萃取效率均高于室温。方法的线性范围50-1600 ng/L,相关系数为0.995-0.998,5种多溴联苯醚的最低检出限(S/N=3)为1.14-16.25 ng/L,相对标准偏差(RSD%,n=5)小于10%。本方法用于真实水样的测定,回收率为74.2%-98.7%。  相似文献   

5.
Producing biochar and biofuels from poultry litter (PL) through slow pyrolysis is a farm-based, value-added approach to recycle the organic waste. Experiments were conducted to examine the effect of pyrolysis temperature on the quality PL biochar and to identify the optimal pyrolysis temperature for converting PL to agricultural-use biochar. As peak pyrolysis temperature increased incrementally from 300 to 600 °C, biochar yield, total N content, organic carbon (OC) content, and cation exchange capacity (CEC) decreased while pH, ash content, OC stability, and BET surface area increased. The generated biochars showed yields 45.7–60.1% of feed mass, OC 325–380 g kg−1, pH 9.5–11.5, BET surface area 2.0–3.2 m2 g−1, and CEC 21.6–36.3 cmolc kg−1. The maximal transformation of feed OC into biochar recalcitrant OC occurred at 500 °C, yet 81.2% of the feed N was lost in volatiles at this temperature. To produce agricultural-use PL biochar, 300 °C should be selected in pyrolysis; for carbon sequestration and other environmental applications, 500 °C is recommended.  相似文献   

6.
By monomer-mediated in-situ growth synthesis strategy, with hydroquinone and 1,3,5-tris(4-aminophenyl)benzene as monomers, a core-shell magnetic porous organic polymer was synthesized through a simple azo reaction. Based on this, a magnetic solid-phase extraction–high-performance liquid chromatography–fluorescence detection method was proposed for the analysis of fluoroquinolones in a honey sample. With ofloxacin, ciprofloxacin, enrofloxacin, lomefloxacin, and difloxacin as target analytes, factors affecting the extraction efficiency had been optimized. The LODs were 1.5–5.4 ng/L (corresponding to 0.23–0.81 μg/kg in honey). The linear range was 0.005–20 μg/L for difloxacin, 0.01–20 μg/L for ofloxacin, ciprofloxacin and lomefloxacin, and 0.02–20 μg/L for enrofloxacin. The enrichment factor was 84.4–91.7-fold with a high extraction efficiency of 84.4–91.7%. The method was assessed by the analysis of target fluoroquinolones in honey samples, and the recoveries for the spiked samples were 79.3–95.8%. The results indicated that the established magnetic solid-phase extraction–high-performance liquid chromatography–fluorescence detection method is efficient for the analysis of trace fluoroquinolones in honey.  相似文献   

7.
Magnetite nanoparticles incorporated into alginate beads and coated with a polypyrrole adsorbent were prepared (polypyrrole/Fe3O4/alginate bead) and used as an effective magnetic solid‐phase extraction sorbent for the extraction and enrichment of endocrine‐disrupting compounds (estriol, β‐estradiol and bisphenol A) in water samples. The determination of the extracted endocrine‐disrupting compounds was performed using high‐performance liquid chromatography with a fluorescence detector. The effect of various parameters on the extraction efficiency of endocrine disrupting compounds were investigated and optimized including the type and amount of sorbent, sample pH, extraction time, stirring speed, and desorption conditions. Under optimum conditions, the calibration curves were linear in the concentration range of 0.5–100.0 μg/L, and the limit of detection was 0.5 μg/L. The developed method showed a high extraction efficiency, the recoveries were in the range of 90.5 ± 4.1 to 98.2 ± 5.5%. The developed sorbent was easy to prepare, was cost‐effective, robust, and provided a good reproducibility (RSDs < 5%), and could be reused 16 times. The developed method was successfully applied for the determination of endocrine‐disrupting compounds in water samples.  相似文献   

8.
A simple, environmentally benign, and rapid method based on temperature‐controlled liquid–liquid microextraction using a deep eutectic solvent was developed for the simultaneous extraction/preconcentration of diazinon and fenitrothion. The method involved the addition of deep eutectic solvent to the aqueous sample followed by heating the mixture in a 75°C water bath until the solvent was completely dissolved in the aqueous phase. Then, the resultant solution was cooled in an ice bath and a cloudy solution was formed. Afterward, the mixture was centrifuged and the enriched deep eutectic solvent phase was analyzed by high‐performance liquid chromatography with ultraviolet detection for quantification of the analytes. The factors affecting the extraction efficiency were optimized. Under the optimized extraction conditions, the limits of detection for diazinon and fenitrothion were 0.3 and 0.15 μg/L, respectively. The calibration curves for diazinon and fenitrothion exhibited linearity in the concentration range of 1–100 and 0.5–100 μg/L, respectively. The relative standard deviations for five replicate measurements at 10.0 μg/L level of analytes were less than 2.8 and 4.5% for intra‐ and interday assays, respectively. The developed method was successfully applied to the determination of diazinon and fenitrothion in water and fruit juice samples.  相似文献   

9.
This research encompasses the use of noxious weed Parthenium hysterophorus as feedstock for pyrolysis carried out at varying temperatures of 300, 450 and 600°C. Temperature significantly affected the yield and properties of the pyrolysis products including char, syngas and bio-oil. Biochar yield decreased from 61% to 37% from 300 °C to 600 °C, whereas yield of gas and oil increased with increasing temperature. The pyrolysis products were physico-chemically characterized. In biochar, pH, conductivity, fixed carbon, ash content, bulk density and specific surface area of the biochar increased whereas cation exchange capacity, calorific value, volatile matter, hydrogen, nitrogen and oxygen content decreased with increasing temperature. Thermogravimetric analysis showed that the biochar prepared at higher temperature was more stable. Gas Chromatography-Mass Spectrometry analysis of biochar indicated the presence of alkanes, alkenes, nitriles, fatty acids, esters, amides and aromatic compounds. Number of compounds decreased with increasing temperature, but aromatic compounds increased with increasing temperature. Scanning electron micrographs of biochar prepared at different temperatures indicated micropore formation at lower temperature while increase in the size of pores and disorganization of vessels occurred at increasing temperature. The chemical composition was found to be richer at lower pyrolysis temperature. GC–MS analysis of the bio-oil indicated the presence of phenols, ketones, acids, alkanes, alkenes, nitrogenated compounds, heterocyclics and benzene derivatives.  相似文献   

10.
A highly efficient ultrasonic-assisted dispersive liquid–liquid microextraction (UA-DLLME) procedure coupled with gas chromatography–mass spectrometry was developed for simultaneous analysis of multiclass herbicides with endocrine-disrupting properties in environmental water samples. The parameters affecting the method’s extraction efficiency, such as the types and volumes of the extractant and dispersive solvents, sample pH, and salt concentration, were systematically optimized by response surface methodology based on central composite design to achieve excellent recoveries for multiclass herbicides. The final UA-DLLME protocol involved 115.6 µL of chloroform (extractant), 861.5 µL of ethanol (dispersive solvent), 5.0 mL of water samples, pH 10.0, and 4.3% NaCl solution. The performance of the developed UA-DLLME was compared with that of conventional solid-phase extraction (SPE). Under optimal extraction conditions, UA-DLLME exhibited a higher enrichment factor and greater sensitivity than SPE, with limits of detection and limits of quantification of 0.004–0.024 and 0.013–0.079 µg L?1, respectively, for seawater samples. The accuracy and precision of UA-DLLME were satisfactory for seawater samples spiked at three levels (0.2, 2.5, and 5.0 µg L?1). Average recoveries ranging from 82.3 to 101.8% were achieved, with relative standard deviations lower than 12.8%. The proposed analytical method was successfully applied to the simultaneous determination and quantification of 17 herbicides in environmental river and seawater samples.  相似文献   

11.
In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte‐containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5–500 µg/L with a coefficient of determination of R= 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84–120%) and acceptable relative standard deviation (1.8–14.9%, = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.  相似文献   

12.
In this study, magnetized MOF‐74 (Ni) was prepared using an ultrasound‐assisted synthesis method. This novel functional magnetic adsorbent was characterized using various techniques. Using the prepared material as adsorbents, a magnetic solid‐phase extraction method coupled with high‐performance liquid chromatography was proposed for determining four phthalate esters in Chinese liquor samples. The extraction parameters, including solution pH, adsorbent amount, extraction time, and eluent type and volume, were optimized. Under the optimized conditions, proposed method showed good linearity within the range of 1.53–200 μg/L for diphenyl phthalate, 2.03–200 μg/L for butyl benzyl phthalate, 7.02–200 μg/L for diamyl phthalate, and 6.03–200 μg/L for dicyclohexyl phthalate, with correlation coefficients > 0.9944, low limits of detection (0.46–2.10 μg/L, S/N = 3), and good extraction repeatability (relative standard deviations of 3.7%, n = 6). This method was successfully used to analyze phthalate esters in Chinese liquor samples with recoveries of 74.4–104.8%. Two phthalate esters were detected in two samples, both at concentrations that satisfied the Chinese national standard, indicating this method has practical application prospects. The extraction efficiency of this method was also compared with conventional solid‐phase extraction using commercial C18 cartridges. The results demonstrated that the proposed magnetic solid‐phase extraction is a simple, time‐saving, efficient, and low‐cost method.  相似文献   

13.
To clarify the effect of the pyrolysis operating conditions of the biomass on the physicochemical properties of the char and its combustion reactivity, palm kernel shell was pyrolyzed at different temperatures (400–700 °C). Analyses such as proximate and ultimate analysis, XRD, FTIR, N2 adsorption, and SEM were used to investigate the physicochemical properties of biochar samples. The results show that an increase in pyrolysis temperature led to a development of pore structure and specific surface area of the produced biochar, which was beneficial for improving the biochar combustion reactivity. Besides, with increase in pyrolysis temperature, the carbon content exhibits a raise trend, but the oxygen and hydrogen contents exhibit the opposite behavior, and the aromaticity and graphitization degree of biochar produced at high temperature also increase. The combustion reactivity of biochar was found to be highly dependent on the pyrolysis temperature, and the aromatic structure and graphitization degree have greater effects on biochar combustion reactivity than those of the specific surface area and pore structure.  相似文献   

14.

A recently developed hydrodistillation–solvent microextraction (HD–SME) method coupled to gas chromatography–mass spectrometry (GC–MS) was applied to the analysis of volatile components of aerial parts of Echinophora cinerea (Boiss). By the use of a simplex optimization method, the effects of extraction time, sample weight and microdrop volume on the extraction efficiency of the method were optimized. In the optimized conditions, 3 µL of n-heptadecane was suspended in the headspace of 6 g of hydrodistillating sample, using a microsyringe. After 7 min, the solvent was retracted back into the syringe and directly injected into the GC–MS injection port. The HD–SME method was compared to a conventional hydrodistillation technique. In general, the extraction with HD–SME was relatively faster and required smaller amounts of sample. The microextraction method also showed some selectivity towards α-phellandrene and Z-β-ocimene monoterpenes. A precision better than 6.5% (expressed as relative standard deviation) was obtained for the method.

  相似文献   

15.
A novel and simple method based on solidified floating organic drop microextraction followed by high‐performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1‐undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0–300.0, 0.3–200.0, and 1.0–200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples.  相似文献   

16.
Glucose‐derived carbon‐decorated magnetic microspheres were synthesized by an easy hydrothermal carbonization method and used as a high‐efficiency adsorbent to extract bisphenols in water and tea drinks. The as‐prepared carbon‐decorated magnetic microspheres had a well‐defined core–shell structure with a shell thickness of about 5 nm. The microspheres possessed high saturation magnetization at 60.8 emu/g and excellent chemical stability in aqueous solution. The experimental parameters affecting the extraction efficiency, including extraction time, pH, adsorbent dosage, desorption solvents, desorption time, and solution volume were evaluated. Electrostatic and π–π interactions were the major driving forces during extraction. Overall, a new magnetic solid‐phase extraction method of determining bisphenols was developed on the basis of as‐prepared magnetic microspheres. The method had a wide linear range, low limits of detection (0.03–0.10 µg/L), and high recoveries (85.4–104.6%).  相似文献   

17.
Feizbakhsh  Alireza  Ehteshami  Shokooh 《Chromatographia》2016,79(17):1177-1185

In this paper, polythiophene/chitosan magnetic nanocomposite as a novel adsorbent is proposed for the preconcentration of triazines in aqueous samples prior to gas chromatography. The synthesized nanoparticles, magnetic chitosan and polythiophene–chitosan magnetic nanocomposite were characterized by scanning electron microscopy. The magnetic polythiophene–chitosan nanocomposite containing analytes could be removed from the sample solution by applying a permanent magnet. The major factors influencing the extraction efficiency including desorption conditions, nanocomposite components ratio, sorbent amount, extraction time, ionic strength and sample pH were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The limit of detection (S/N = 3) and limit of quantification (S/N = 10) of the method under optimized conditions were 10–30 and 100 ng L−1, respectively. Under the optimum conditions, good linearity was obtained within the range of 100–5000 ng L−1 for all triazines with correlation coefficients >0.9994. The relative standard deviation at a concentration level of 150 ng L−1 was 7–12 %. Furthermore, the method was successfully applied to the determination of triazines in real samples, where relative recovery percentages of 96–102 % were obtained. Compared with other methods, the current method is characterized by easy, fast separation and low detection limits.

  相似文献   

18.
In this work, an ampholine‐functionalized hybrid organic–inorganic silica sorbent was successfully used to extract melamine from a milk formula sample by a hydrophilic interaction solid‐phase extraction protocol. Primary factors affecting the extraction efficiency of the material such as extraction solvent, elution solvent, sample loading volume, and elution volume have been thoroughly optimized. Under the optimized hydrophilic solid‐phase extraction conditions, the recoveries of melamine spiked in milk formula samples ranged from 86.2 to 101.8% with relative standard deviations of 4.1–9.4% (n = 3). The limit of detection (S/N = 3) was 0.32 μg/g. The adsorption capacity toward melamine was 30 μg of melamine per grams of sorbent. Due to its simplicity, rapidity and cost effectiveness, the newly developed hydrophilic solid‐phase extraction method should provide a promising tool for daily monitoring of doped melamine in milk formula.  相似文献   

19.
A simple and sensitive method based on the combination of solid‐phase microextraction (SPME) and high‐performance liquid chromatography with ultroviolet detection was developed for the simultaneous determination of clenbuterol, salbutamol and ractopamine in pig samples. Parameters of the SPME procedure affecting extraction efficiency, such as the type of fiber, extraction time, extraction temperature, ion strength, pH of sample and stirring rate, were optimized. The developed method was validated according to the International Conference on Harmonization guidelines. The calibration curves were linear over a range of 0.5–50 µg/L for clenbuterol and ractopamine, and 0.2–20 µg/L for salbutamol. The limits of detection were 0.1 µg/L for clenbuterol, 0.05 µg/L for salbutamol and 0.1μg/L for ractopamine, respectively. The averages of intra‐ and inter‐day accuracy ranged from 79.8 to 92.4%. The intra‐day and inter‐day precision were below 9.6% for the three analytes. This method exhibited the advantages of simplicity, rapidity and low solvent consumption, and was suitable for the monitoring of β2‐agonists residue in pig samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A fast, sensitive and simple oil-in-water emulsion (OWE) method was developed for extraction of four phenolic pollutants in environmental water samples followed by gas chromatography and flame ionization detection. In this method, the density of a binary organic solvent (one heavier and one lighter than the sample) was balanced with the density of the sample solution. A stable emulsion was formed at room temperature under vigorous stirring using a Teflon-coated magnetic stirring bar. After addition of 10 µL of the heavier organic solvent and centrifugation, phase separation occurred. The influence of several important parameters on the extraction efficiency of phenolic compounds was evaluated. Under optimized experimental conditions, the calibration graphs were linear in the concentration range 0.025–20 mg L?1 with coefficients of determination more than 0.9994. The limits of detection and quantification were in the range 19.2–76.0 and 64.1–251.0 μg L?1, respectively. Intra-day and inter-day precisions were less than 5.0 %. The procedure was used for the determination of phenolic compounds in spiked water samples with good results. Recoveries range from 96.5 to 103.0%, and relative standard deviations are <2.5% (for n?=?3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号