首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
在过去的20年中,聚合物中空微球由于其独特的结构和优异的性质受到了广泛的关注.它们表现出低密度、高比表面积和高负载力的特性,在催化、药物递送及能量存储等领域中展现出巨大的应用前景.本文综合评述了聚合物中空微球的合成策略,主要包括模板法、乳液聚合法、自组装与及微流控等,并详细阐述和讨论了这些合成策略的原理、典型过程以及优缺点.同时,还指出了现有合成策略面临的挑战以及聚合物中空微球存在的不足,并对聚合物中空微球的制备和应用前景进行了展望.  相似文献   

2.
Controllable porous polymer particles generated by electrospraying   总被引:1,自引:0,他引:1  
In this paper, an electrospraying technique was applied to prepare polycaprolactone (PCL) polymer particles with a different microstructure. The PCL particles can be controlled to have a porous microstructure by tailoring the evaporation of solvents during the electrospraying process. The effect of various concentrations on the morphology and microstructure of PCL particles was investigated. The experiment has demonstrated the versatile capability of the electrohydrodynamic atomization process for preparing polymer PCL porous particles and fibers. The thermally induced and evaporation-induced phase separations are proposed as the main mechanisms for the porous microstructure formation. The results demonstrate that the electrospraying method is a simple, innovative and cost-effective method for preparing polymer particles with controllable microstructures.  相似文献   

3.
Colloidal particles play an important role in various areas of material and pharmaceutical sciences, biotechnology, and biomedicine. In this overview we describe micro- and nano-particles used for the preparation of polyelectrolyte multilayer capsules and as drug delivery vehicles. An essential feature of polyelectrolyte multilayer capsule preparations is the ability to adsorb polymeric layers onto colloidal particles or templates followed by dissolution of these templates. The choice of the template is determined by various physico-chemical conditions: solvent needed for dissolution, porosity, aggregation tendency, as well as release of materials from capsules. Historically, the first templates were based on melamine formaldehyde, later evolving towards more elaborate materials such as silica and calcium carbonate. Their advantages and disadvantages are discussed here in comparison to non-particulate templates such as red blood cells. Further steps in this area include development of anisotropic particles, which themselves can serve as delivery carriers. We provide insights into application of particles as drug delivery carriers in comparison to microcapsules templated on them.  相似文献   

4.
PEG-containing copolymers play a prominent role as biomaterials for different applications ranging from drug delivery to tissue engineering. These custom-designed materials offer enormous possibilities to change the overall characteristics of biomaterials by improving their biocompatibility and solubility, as well as their ability to crystallize in polymer blends and to resist protein adsorption. This article demonstrates various principles of PEG-based material design that are applied to fine tune the properties of biomaterials for different tissue engineering applications. More specifically, strategies are described to develop PEG copolymers with various block compositions and specific bulk properties, including low melting points and improved surface hydrophilicity. Highly hydrated polymer gel networks for promoting cellular growth or suppressing protein adsorption and cell adhesion are introduced. By incorporating selectively cleavable cross-links, these hydrophilic polymers can also serve as smart hydrogel scaffolds, mimicking the natural extracellular matrix for cell cultivation and tissue growth. Ultimately, these developments lead to the creation of biomimetic materials to immobilize bioactive compounds, allowing precise control of cellular adhesion and tissue growth. [image: see text]  相似文献   

5.
十年前,光子晶体的需求促进了非球形颗粒的研究热潮。非球形颗粒由于其对称性下降,带来了新的性能和应用前景,成为当前材料领域研究的热点,得到了较广泛研究,目前其制备方法包括种子聚合法、自组装法、粒子聚集法、微流体法和机械拉伸法等。本文简述了种子聚合法的发展历程,介绍了种子聚合法制备非球形聚合物颗粒的相关机理,以种子微球材质分类综述了种子聚合法制备非球形聚合物颗粒的形貌和结构控制技术进展,概述了其潜在的应用领域,展望了可能的发展趋势。  相似文献   

6.
We developed a novel "spray dry-based" method for preparing surface-modified particle via "block copolymer-assisted" emulsification/evaporation for pulmonary drug delivery. The method included three steps: (1) o/w emulsion containing both hydrophobic polymers and amphiphilic block copolymers was obtained by emulsification of water and a polymer-containing organic solvent, (2) the o/w emulsion was misted with a nebulizer, and (3) the emulsion mists were dried by a heater. In this way, the hydrophobic polymers and the hydrophobic part of the amphiphilic block copolymers gradually tangled during the evaporation of organic solvents from the o/w emulsion. Consequently, the hydrophilic polymer chain was introduced on the particle surface. The particle surface can be easily modified although there are no reactive groups in the hydrophobic polymer molecules. We successfully obtained dry PEG-PLA/PLGA microparticles by controlling the weight ratio of the block copolymer and the hydrophobic polymer. The introduction of PEG to the particle surface involves an increase in the Zeta potential of the particles. Interestingly, the "dimpled" microparticles having a diameter of approximately 2 μm were obtained. The "dimpled" microparticles can serve as drug carriers for pulmonary drug delivery, because the particles have a large surface area. We expect that this novel surface-modification technique will enable efficient fabrication of particles in drug delivery systems.  相似文献   

7.
Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added‐value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well‐known peptide coupling reactions. The set of chemistries that we employed as proof‐of‐concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery carriers, including enhanced colloidal stabilities and the incorporation of additional functional groups such as polyethylene glycol (PEG) or fluorescent dyes that enabled tracking of their cellular uptake. Finally, we ascertained the cytotoxicity of the new CPP nanoparticles loaded with camptothecin to human breast adenocarcinoma (MCF‐7). Efflux measurements show that the encapsulation of camptothecin enhances the potency of the drug 6.5‐fold and increases the drug retention within the cell.  相似文献   

8.
The synthesis of new polymer colloids based on renewable resources, such as sugar‐derived monomers, is nowadays a matter of interest. These new polymeric particles should be useful in biomedical applications, such as drug delivery, because of their assumed biodegradability. In this work, two new families of polymer latex particles, based on a sugar‐derived monomer, 3‐O‐methacryloyl‐1,2:5,6‐di‐O‐isopropylidene‐α‐D ‐glucofuranose (3‐MDG), were produced and characterized. The syntheses of poly(3‐MDG) crosslinked particles and those obtained by copolymerization with methacrylic acid (MAA), poly(3‐MDG‐co‐MAA) crosslinked particles, were prepared by surfactant‐free emulsion polymerization in a batch reactor. The average particle diameter evolutions, the effect of pH of the dispersion medium on the final average diameters, together with the microscopic and morphological analysis of the particle's surface and inner dominium, were analyzed. Poly(3‐MDG‐co‐EGDMA) stable particles were obtained by adding low amounts of initiator. The surface‐charge density of these particles corresponded to the sulfate groups coming from the initiator. In the second family of latices, poly(3‐MDG‐co‐MAA‐co‐EGDMA) particles, DCP measurements and SEM and TEM observations showed that the sizes and surface characteristics depended on the amounts of MAA and crosslinker used in the reaction mixture. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 443–457, 2006  相似文献   

9.
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising materials for various biomedical applications including targeted drug delivery and imaging, hyperthermia, magneto-transfections, gene therapy, stem cell tracking, molecular/cellular tracking, magnetic separation technologies (e.g. rapid DNA sequencing), and detection of liver and lymph node metastases. The most recent applications for SPIONs for early detection of inflammatory, cancer, diabetes and atherosclerosis have also increased their popularity in academia. In order to increase the efficacy of SPIONs in the desired applications, especial surface coating/characteristics are required. The aim of this article is to review the surface properties of magnetic nanoparticles upon synthesis and the surface engineering by different coatings. The biological aspects, cytotoxicity, and health risks are addressed. Special emphasis is given to organic and inorganic-based coatings due to their determinant role in biocompatibility or toxicity of the final particles.  相似文献   

10.
Applications of polymer nanofibers in biomedicine and biotechnology   总被引:2,自引:0,他引:2  
Recent advancements in the electrospinning method enable the production of ultrafine solid and continuous fibers with diameters ranging from a few nanometers to a few hundred nanometers with controlled surface and internal molecular structures. A wide range of biodegradable biopolymers can be electrospun into mats with specific fiber arrangement and structural integrity. Through secondary processing, the nanofiber surface can be functionalized to display specific biochemical characteristics. It is hypothesized that the large surface area of nanofibers with specific surface chemistry facilitates attachment of cells and control of their cellular functions. These features of nanofiber mats are morphologically and chemically similar to the extracellular matrix of natural tissue, which is characterized by a wide range of pore diameter distribution, high porosity, effective mechanical properties, and specific biochemical properties. The current emphasis of research is on exploiting such properties and focusing on determining appropriate conditions for electrospinning various polymers and biopolymers for eventual applications including multifunctional membranes, biomedical structural elements (scaffolds used in tissue engineering, wound dressing, drug delivery, artificial organs, vascular grafts), protective shields in specialty fabrics, and filter media for submicron particles in the separation industry. This has resulted in the recent applications for polymer nanofibers in the field of biomedicine and biotechnology.  相似文献   

11.
Hollow polymer capsules are attracting increasing research interest due to their potential application as drug delivery vectors, sensors, biomimetic nano- or multi-compartment reactors and catalysts. Thus, significant effort has been directed toward tuning their size, composition, morphology, and functionality to further their application. In this review, we provide an overview of emerging techniques for the fabrication of polymer capsules, encompassing: self-assembly, layer-by-layer assembly, single-step polymer adsorption, bio-inspired assembly, surface polymerization, and ultrasound assembly. These techniques can be applied to prepare polymer capsules with diverse functionality and physicochemical properties, which may fulfill specific requirements in various areas. In addition, we critically evaluate the challenges associated with the application of polymer capsules in drug delivery systems.  相似文献   

12.
高分子包囊药物释放体系   总被引:11,自引:0,他引:11  
用高分子作为载体的高分子微包囊和纳米级包囊药物制剂不仅能控制药物以一定的速度释放,而且可对生物体的生理指标变化作出反馈,因而可以成为靶向药物释放体系。通过用高分子包囊还可以延长蛋白质和多肽类药物的生理活性,提高药物稳定性,使之成为长效药物,并使一些难以口服的药物能够制成口服制剂。文章在介绍有关高分子药物释放体系的一些基本原理,以及与之相关的药学、药理学、物理化学和高分子材料科学方面知识的基础上,较全面地综述了高分子包囊药物的制备技术和应用。阐述了高分子包囊的粒径、表面积、孔度、药物性能和药含量,以及高分子包囊材料的性能对药物释放行为的影响。对药物传送机理亦进行了扼要的介绍。  相似文献   

13.
Compared to spherical matrices, particles with well-defined internal structure provide large surface to volume ratio and predictable release kinetics for the encapsulated payloads. We describe self-assembly of polymeric particles, whereby competitive kinetics of viscous sedimentation, diffusion, and cross-linking yield a controllable toroidal-spiral (T-S) structure. Precursor polymeric droplets are splashed through the surface of a less dense, miscible solution, after which viscous forces entrain the surrounding bulk solution into the sedimenting polymer drop to form T-S channels. The intricate structure forms because low interfacial tension between the two miscible solutions is dominated by viscous forces. The biocompatible polymer, poly(ethylene glycol) diacrylate (PEG-DA), is used to demonstrate the solidification of the T-S shapes at various configurational stages by UV-triggered cross-linking. The dimensions of the channels are controlled by Weber number during impact on the surface, and Reynolds number and viscosity ratio during subsequent sedimentation. We anticipate applications of the T-S particle in drug delivery, wherein diffusion through these T-S channels and the polymer matrix would offer parallel release pathways for molecules of different sizes. Polyphosphate, as a model macromolecule, is entrained in T-S particles during their formation. The in vitro release kinetics of polyphosphate from the T-S particles with various channel length and width is reported. In addition, self-assembly of T-S particles occurs in a single step under benign conditions for delicate macromolecules, and appears conducive to scaleup.  相似文献   

14.
陈云华  王朝阳  李煜  童真 《化学进展》2009,21(4):615-621
具有不对称双面结构的Janus粒子以其独特性能,在乳液稳定、光学、生物传感、药物输送、电子学等领域具有潜在的应用前景。本文就近年来Janus粒子制备技术的研究进展进行了总结,详细地介绍了Janus粒子主要制备方法,包括微流体合成、拓扑选择表面改性、模板导向自组装、可控相分离及可控表面成核,并指出了各种Janus粒子制备技术存在的问题及其发展方向,认为基于可控相分离及表面成核的合成方法成本较低,产率较大,有可能得到更为广泛的应用。  相似文献   

15.
The anti-solvent synthesis of micron-scale particles, their stabilization, and subsequent self-assembly into polymer films suitable for drug delivery is presented. The colloidal particles were stabilized using low molecular weight hydroxypropyl methylcellulose (HPMC), while drug encapsulation was carried out with high molecular weight HPMC and polyvinylpyrrolidone (PVP). Griseofulvin (GF) was used as the model drug compound, and the polymer films were evaluated in terms of their surface morphology, mechanical properties and in vitro drug release. In general, the release rates were best described by first-order and Hixson-Crowell kinetic models, and in a typical film containing 57% HPMC, 100% of GF was released within 50 min.  相似文献   

16.
Light has been used to induce photochemical changes in the surface chemistry of porous polymer microstructures giving rise to a substantial change in volume. When illumination is asymmetric, this results in light-directed motion of the structure. Swellable trimethylolpropane trimethacrylate cross-linked poly(2-hydroxylethyl methacrylate) microstructures were constructed by azo-bis-isobutyronitrile photopolymerization using a 20 x 0.5 NA microscope objective and 365 nm laser excitation. Structures were aminiated with glycine and protected with the photolabile group 4-nitroveratryloxycarbanyl (NVOC). Addition of NVOC resulted in a volume increase >10% when performed in the solvent N,N'-dimethylformamide. Photochemical cleavage of NVOC using asymmetric illumination of a cone-shaped microstructure with a 365 nm laser induced polymer shrinkage in excess of 4% at the base of the cone and resulted in a maximum velocity of 1 mm/s at the tip of the cone. Symmetric illumination gave rise to displacement of solvent from the microstructure due to shrinkage with a velocity in excess of 0.01 mm/s. This system could in principle be used for light-directed movement of micromechanical systems, optical control of microfluidics, or light activated chemical delivery.  相似文献   

17.
Materials with switchable surfaces, capable of changing surface properties under external stimuli, are playing a pivotal role in many applications, such as tissue engineering, biosensors, and drug/protein delivery. In this research silica particles with patterned and switchable surfaces are fabricated. Surface micelles on silica particles are formed by coassembly of polymer brushes and “free” block copolymer chains in a selective solvent. The cores of the surface micelles are crosslinked by anthracene photodimerization. After quaternization of the coronae, amphiphilic surface micelles are prepared. The surface micelles are able to rearrange in different media. After treatment with an organic solvent, the surfaces of silica particles are occupied by hydrophobic polymer components; in aqueous solution, the positively charged polymer chains are on the surfaces. The switching of the surface micelles results in changes in surface composition and wetting behaviors.  相似文献   

18.
Molecularly imprinted polymers are generated by curing a cross-linked polymer in the presence of a template. During the curing process, noncovalent bonds form between the polymer and the template. The interaction sites for the noncovalent bonds become "frozen" in the cross-linking polymer and maintain their shape even after the template is removed. The resulting cavities reproduce the size and shape of the template and can selectively reincorporate the template when a mixture containing it flows over the imprinted surface. In the last few decades the field of molecular imprinting has evolved from being able to selectively capture only small molecules to dealing with all kinds of samples. Molecularly imprinted polymers (MIPs) have been generated for analytes as diverse as metal ions, drug molecules, environmental pollutants, proteins and viruses to entire cells. We review here the relatively new field of surface imprinting, which creates imprints of large, biologically relevant templates. The traditional bulk imprinting, where a template is simply added to a prepolymer before curing, cannot be applied if the analyte is too large to diffuse from the cured polymer. Special methods must be used to generate binding sites only on a surface. Those techniques have solved crucial problems in separation science as well as chemical and biochemical sensing. The implementation of imprinted polymers into microfluidic chips has greatly improved the applicability of microfluidics. We present the latest advances and different approaches of surface imprinting and their applications for microfluidic devices.  相似文献   

19.
分子印迹聚合物是通过在模板存在下固化交联的聚合物制备的.在固化过程中,聚合物和模板间形成非共价键.这些非共价结合位点被"冻结"在交联的聚合物中,即使移去模板后也依然维持他们的形状.余下的空穴与模板的尺寸和形状一致,并且可以选择性地从流过的混合物中俘获模板物质.在近几十年中,分子印迹的领域由选择性俘获小分子扩展到处理各种类型的样品.分子印迹聚合物(MIP)被用于分析种类繁多的样品,比如金属离子、药物分子、环境污染物、蛋白、病毒以至整个细胞.本文中我们综述相对较新的领域——表面印迹,这是一种可以用来生成相对较大的生物相关模板的印迹方法.传统的整体印迹法是直接在固化前将模板加入预聚体中,因而不适用于那些大到无法从固化后的聚合物中扩散出来的物质.要仅在表面上生成结合位点,必须要使用特别的方法,由此产生的表面印迹技术解决了分离科学以及化学和生物化学监测的重要问题.将印迹聚合物植入微流控芯片,大大扩展了微流体技术的适用性.本文叙述表面印迹最新的进展以及不同的实施手段,以及它们在微流控器件中的应用.  相似文献   

20.
Thermoresponsive polymer gels exhibit pronounced swelling and deswelling upon changes in temperature, rendering them attractive for various applications. This transition has been studied extensively, but only little is known about how it is affected by nano‐ and micrometer‐scale inhomogeneities in the polymer gel network. In this work, droplet microfluidics is used to fabricate microgel particles of strongly varying inner homogeneity to study their volume phase behavior. These particles exhibit very similar equilibrium swelling and deswelling independent of their inner inhomogeneity, but the kinetics of their volume phase transition is markedly different: while gels with pronounced micrometer‐scale inhomogeneity show fast and affine deswelling, homogeneous gels shrink slowly and in multiple steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号