首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A number of computational schemes based on different Density Functional Theory (DFT) functionals in combination with a number of basis sets were tested in the calculation of 1H and 13C NMR chemical shifts of strychnine, as a typical representative of the vitally important natural products, and used as a challenging benchmark and a rigorous test for such calculations. It was found that the most accurate computational scheme, as compared with experiment, was PBE0/pcSseg-4//pcseg-3 characterized by a mean absolute error of 0.07 ppm for the range of about 7 ppm for 1H NMR chemical shifts and that of only 1.13 ppm for 13C NMR chemical shifts spread over the range of about 150 ppm. For more practical purposes, including investigation of larger molecules from this series, a much more economical computational scheme, PBE0/pcSseg-2//pcseg-2, characterized by almost the same accuracy and much less computational demand, was recommended.  相似文献   

2.
The PBE0/pcSseg-2//pcseg-2 calculations of 1H and 13C NMR chemical shifts were performed for a classical series of 12 Strychnos alkaloids (except for the earlier studied parent strychnine), namely akuammicine, isostrychnine, rosibiline, tsilanine, spermostrychnine, diaboline, cyclostrychnine, henningsamide, strychnosilidine, strychnobrasiline, holstiine, and icajine. It was found that the calculated 1H and 13C NMR chemical shifts show markedly good correlations with available experimental data, as characterized by a mean absolute error of 0.22 ppm for the range of 8 ppm for protons and 1.97 ppm for the range of 180 ppm for carbons. Complementarily, the present results provide essential NMR update and fill a gap in the NMR data of this distinguished group of vitally important natural products.  相似文献   

3.
The density functional theory calculation of 1H and 13C NMR chemical shifts in a series of ten 10 classically known Strychnos alkaloids with a strychnine skeleton was performed at the PBE0/pcSseg-2//pcseg-2 level. It was found that calculated 1H and 13C NMR chemical shifts provided a markedly good correlation with experiment characterized by a mean absolute error of 0.08 ppm in the range of 7 ppm for protons and 1.67 ppm in the range of 150 ppm for carbons, so that a mean absolute percentage error was as small as ~1% in both cases.  相似文献   

4.
The direct in situ NMR observation and quantification, based on the aldehyde –CH chemical shift region, of the inter‐conversion of secoiridoid derivatives due to temperature and solvent effects is demonstrated in complex extracts of natural products without prior isolation of the individual components. The equilibrium between the aldehyde hydrate form and the dialdehyde form of the oleuropein aglycon of an olive leaf aqueous extract in D2O was shown to be temperature dependent. The resulting thermodynamic values of the Van't Hoff plot with ΔHo = ?26.34 ± 1.00 kJ mol?1 and TΔS° (298 K) = ?24.70 ± 1.00 kJ mol?1 demonstrate a significant entropy term which nearly compensates the effect of enthalpy at room temperature. The equilibrium between the two diastereomeric hemiacetal forms and the dialdehyde form of the oleuropein 6‐O‐β‐d ‐glucopyranoside aglycon of an olive leaf aqueous extract in CD3OD was also shown to be strongly temperature dependent again because of the significant entropy term (TΔS° (298 K) = ?26.50 ± 1.39 kJ mol?1) compared with that of the enthalpy term (ΔHo = ?36.64 ± 1.46 kJ mol?1). This is the first demonstration of the significant role of the entropy parameter in determining the equilibrium of chemical transformations in complex mixtures of natural products due to solvent and temperature effects. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
由于精细化工行业的迅速发展,作为“工业味精”的表面活性剂,已广泛进入日化、轻工、纺织、建筑、石化、金属加工等生产领域,对其的分析也显得日益重要。表面活性剂的分析历来是比较困难的课题之一,而通过核磁共振(NMR)进行定性和定量的文献则更少[1]。本文利用NMR为多种表面活  相似文献   

6.
利用'H、'13CNMR谱及HMBC、HMQC二维谱对10种苯并噁嗪类化合物的结构进行了研究,初步得出了它们的NMR谱特征,分析了化学位移的影响因素。  相似文献   

7.
Here, we studied the influence of the methoxyl groups attached at C‐7 and C‐2′ of natural and synthetic 1‐arylindanes on the chemical shift of the signal of bibenzylic hydrogen and carbon atoms and J1,2 coupling constants. This influence was also analysed in natural 1‐aryltetralins and related compounds that possess methoxyl and/or hydroxyl groups bound at C‐8 and C‐2′. The methoxyl groups attached at C‐7 in indanes or at C‐8 in tetralins produce a deshielding signal at H‐1 and shield at C‐1 and a strong decrease in the value of J1,2 due to the pseudoequatorial location adopted by the aryl group bound at C‐1, avoiding an ‘A1,3 strain’. Furthermore, compounds with hydroxyl or methoxyl groups in C‐2′, in the absence of substituents of C‐7 or C‐8, present a strong deshielding signal at H‐1, strong shield of the C‐1 signal and a decrease in the value of J1,2. This is attributed to the stereoelectronic effects of the methoxyl or hydroxyl groups, which we have called ‘Asarone effect’. NOESY experiments were conducted to confirm the configuration and conformation of some of the compounds included in this work. This study shows that both effects, A1,3 strain and Asarone effect, must be taken into account when the structure of natural indanes and tetralins is analysed by using 1H‐NMR and 13C‐NMR spectra. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
An NMR study of 11 naturally occurring abietane diterpenoids is described. In addition to one‐dimensional NMR methods, including DPFGSE 1D‐NOE spectra, two‐dimensional shift‐correlated experiments [1H,1H COSY, 1H,13C‐gHSQC 1J(C,H) and 1H,13C‐gHMBC nJ(C,H) (n = 2 and 3)] were used for the complete and unambiguous 1H and 13C chemical shift assignments of these substances. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
We have developed an NMR chemical shift prediction system that enables high throughput automatic grading of NMR spectra. In support of high throughput synthetic efforts for our drug discovery program, a rapid and accurate analysis for identity was needed. The system was designed and implemented to take advantage of the NMR assignments that had been tabulated on internally generated research compounds. The system has been operational for four years and has been used in conjunction with an internally written grading program to successfully analyze several hundred thousand samples based only on their 1D 1H spectrum. A focused test of the system's accuracy on 1006 molecules demonstrated the ability to estimate the proton chemical shift with an average error of +/?0.16 ppm. This level of chemical shift accuracy allows for reliable structure confirmation by automated analysis using only proton NMR. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The effects of including (a) implicit solvent in geometry optimizations, (b) conformationally flexible molecules in test sets, and (c) empirical dispersion D3(BJ) on scaling factors for predicting 1H and 13C NMR chemical shifts were explored. Scaling factors with optimizations performed in the gas phase and with a Polarizable Continuum Model (PCM) solvent model were obtained for 12 organic solvents, including 2,2,2-trifluroethanol and chlorobenzene, for which scaling factors have been developed for the first time. Scaling factors for aromatic solvents were split into primary and secondary scaling factors to account for CH–π effects. Including empirical dispersion D3(BJ) did not lead to significant improvement.  相似文献   

11.
This is the first one of the three closely interrelated reviews to be published in Magnetic Resonance in Chemistry dealing with accordingly theoretical background, chemical applications, and biochemical studies of and by means of computational 1H NMR. Presented in the first part of the review is a general outline of the modern theoretical methods and accuracy factors of computational 1H NMR involving locally dense basis set schemes, solvent effects, vibrational corrections, and relativistic effects performed at the density functional theory and/or nonempirical levels. This review is dedicated to Prof. Stephan Sauer in view of his invaluable contribution to the field of computational nuclear magnetic resonance.  相似文献   

12.
王乃兴 《合成化学》2001,9(6):490-494
对一些二维NMR技术,例如^1H-^1H相关谱(^1H-^1H COSY),^1H-^13C杂核化学位移相关谱(^1H-C^13 COSY),奥氏核效应交换相关谱(NOESY)作了介绍,列举了一些典型谱图。  相似文献   

13.
Nine flavonol derivatives were studied. Previously reported NMR data of three of these derivatives were corrected. We report complete assignments of the NMR data for six flavonol derivatives not previously studied.  相似文献   

14.
The 1H and 13C NMR parameters (chemical shifts and coupling constants) were determined of four biindenylidene isomers, (E)‐2,3,2′,3′‐tetrahydro‐[1,1′]biindenylidene, (Z)‐2,3,2′,3′‐tetrahydro‐[1,1′]biindenylidene, 1,3,1′, 3′‐tetrahydro‐[2,2′]biindenylidene and 2,3,1′,3′‐tetrahydro‐[1,2′]biindenylidene. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Ortho‐substituted and para‐substituted aminophenyl benzothiazoles were synthesised and characterised using NMR spectroscopy. A comparison of the proton chemical shift values reveals significant differences in the observed chemical shift values for the NH protons indicating the presence of a hydrogen bond in all ortho‐substituted compounds as compared to the para compounds. The presence of intramolecular hydrogen bond in the ortho amino substituted aminophenyl benzothiazole forces the molecule to be planar which may be an additional advantage in developing these compounds as Alzheimer's imaging agent because the binding to amyloid fibrils prefers planar compounds. The splitting pattern of the methylene proton next to the amino group also showed significant coupling to the amino proton consistent with the notion of the existence of slow exchange and hydrogen bond in the ortho‐substituted compounds. This is further verified by density functional theory calculations which yielded a near planar low energy conformer for all the o‐aminophenyl benzothiazoles and displayed a hydrogen bond from the amine proton to the nitrogen of the thiazole ring. A detailed analysis of the 1H, 13C and 15N NMR chemical shifts and density functional theory calculated structures of the compounds are described. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A Monte Carlo random search using molecular mechanics, followed by geometry optimization of each minimum energy structure employing density functional theory (DFT) calculations at the B3LYP/6-31G* level and a Boltzmann analysis of the total energies, generated accurate molecular models which describe the conformational behavior of the antispasmodic bicyclic sesquiterpene valeranone (1). The theoretical H-C-C-H dihedral angles gave the corresponding 1H, 1H vicinal coupling constants using a generalized Karplus-type equation. In turn, the 3J(H,H) values were used as initial input data for the spectral simulation of 1, which after iteration provided an excellent correlation with the experimental 1H NMR spectrum. The calculated 3J(H,H) values closely predicted the experimental values, excepting the coupling constant between the axial hydrogen alpha to the carbonyl group and the equatorial hydrogen beta to the carbonyl group (J(2beta, 3beta)). The difference is explained in terms of the electron density distribution found in the highest occupied molecular orbital (HOMO) of 1. The simulated spectrum, together with 2D NMR experiments, allowed the total assignment of the 1H and 13C NMR spectra of 1.  相似文献   

17.
Six flavone derivatives were studied. Previously reported NMR data of three of these derivatives were corrected and the NMR data for the other three derivatives not studied previously were completely assigned on the basis of the basic 1D and 2D NMR experiments and molecular modeling.  相似文献   

18.
Pseudomonas putida strain KT2442, harbouring the pWW0 TOL plasmid, was grown with a number of different homologous aromatic acids as carbon sources. Small samples of liquid culture supernatant were collected and directly analysed by 2D NMR spectroscopy. In all cases similar compounds with olefinic signals were observed to accumulate. To elucidate the structures of these compounds, 2D NMR experiments with 500 and 600 MHz spectrometers equipped with a CryoProbe (Bruker BioSpin) were performed on samples obtained from a culture growing on 4‐methylbenzoate and, for 13C spectroscopy, on 13C‐labelled 4‐methylbenzoate. In all cases a 1,2‐dihydroxycyclohexa‐3,5‐diene‐carboxylate derivative was identified. The use of this technique helped us to identify easily some metabolites that were released into the solution by bacteria and to follow their secretion as a function of time. The high sensitivity of the present approach allowed a clear and rapid acquisition of spectra, notwithstanding the low concentration of the compounds. The benefits of introducing the use of NMR cryoprobes to perform metabolic pathway studies is demonstrated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Common substitution positions of flavonols are at C-5 and C-7; 6-substituted flavonol derivatives are rarely found in natural sources. Here, we report complete assignments of 1H and 13C chemical shifts of eight flavonol derivatives including four 6-substituted flavonols.  相似文献   

20.
The characterization of four aryl diisoprenes was carried out by 1D‐ and 2D‐NMR methods, which permitted the assignment of the signals of all protons and all carbon atoms. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号