首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As the pesticide and its metabolite residues in processed fruits could become a significant route of human exposure. The work presented herein focuses on developing a feasible quick, easy, cheap, effective, rugged, and safe method with improved extraction and cleanup system for the determination of imidacloprid, acetamiprid, thiamethoxam, and clothianidin (a metabolite of thiamethoxam) in canned fruits. The low toxic solvent ethanol was used to extract the analytes, and ammonium sulfate was used to promote phase separation. Moreover, the carboxylated multi-walled carbon nanotube acted as the clean-up sorbent for the removal of high solubility impurities. The proposed method was validated with fortified real samples at different concentration levels (20–200 μg/kg). Recoveries obtained from three spiked levels (20, 50, and 200 μg/kg) ranged from 74.9 to 86.4% with relative standard deviations of the intra-day and inter-day in the range of 0.8–5.5 and 2.0–7.1%, respectively. The limits of detection ranged from 0.2 to 0.5 and 0.2 to 0.6 μg/kg for orange and peach, respectively. The results demonstrated that the proposed method could be considered appropriate, and comparatively lower toxic for the analysis of neonicotinoid pesticide residues in canned fruit.  相似文献   

2.
In this work, a novel quick, easy, cheap, effective, rugged, and safe technique with hydrophobic natural deep eutectic solvent as both extractant and analyte protectant was developed and combined with gas chromatography–tandem mass spectrometry to analyze pyrethroid residues in tomatoes. Eight hydrophobic natural deep eutectic solvents were first evaluated as analyte protectants and those with decanoic acid or lactic acid as hydrogen bond donor were demonstrated to be effective in compensating for the matrix effects of pyrethroids in the gas chromatography system. Hence, they were added to solvent standards for correcting the quantitation errors instead of matrix‐matched calibration standards. Then the abilities of these acid‐based deep eutectic solvents to extract pyrethriods from tomatoes were evaluated. Results showed the recoveries of all pyrethroids reached to over 80% with only 5 mL menthol:decanoic acid (1:1) used, and good phase separation was easily achieved without the addition of inorganic salt in the extraction step, indicating hydrophobic natural deep eutectic solvent could be a green substitute for acetonitrile in the quick, easy, cheap, effective, rugged, and safe extraction. Compared with the conventional method, the proposed protocol improved the recoveries, reduced the matrix effects, and simplified the extraction step, demonstrating to be an effective, fast, and green method.  相似文献   

3.
High-performance liquid chromatography-tandem mass spectrometry coupled with the quick, easy, cheap, effective, rugged and safe method was established for the qualitative and quantitative detections of 20 mycotoxins in milk. The linear range of this method was 0.01–10 μg/L and the correlation coefficients were all greater than or equal to 0.9933. At three levels of addition, the spiked recoveries ranged from 80.00 to 112.50%, relative standard deviations were 2.67–14.97%, limits of quantitation were 0.02–4.00 μg/kg, and limits of detection were 0.007–1.300 μg/kg. This developed procedure for the identification and quantitation of mycotoxins provided prospective support for quality regulation.  相似文献   

4.
A novel method for detecting pesticide multi-residue in grass forage (alfalfa and oat) was established based on the one-step automatic extraction and purification technology of quick, easy, cheap, effective, rugged, and safe combined with ultrahigh-performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry. The crushed sample was extracted with acetonitrile with 1% acetate, followed by a cleanup step with a primary-secondary amine, octadecylsilane, and graphitized carbon black. The extraction and purification were carried out using the one-step automatic pretreatment equipment. The target pesticides were acquired in positive ion electrospray ionization mode and full scan/data dependent secondary scan mode. The calibration curve shows good linearity over the corresponding concentration range, with the coefficient of determination greater than 0.99. The screening detection limits were 0.5–50 μg/kg, and the limit of quantification for the 206 pesticides was set at 1–50 μg/kg. At the spiking levels of one, two, and 10 times of limit of quantification, more than 95% of pesticides had recovery between 70–120%, with a relative standard deviation ≤20%. The method was proved to be simple, rapid, high-sensitivity, and could be routinely used for the high throughput screening and quantitative analysis of pesticide residues in alfalfa and oat.  相似文献   

5.
We describe the first application of a quick, easy, cheap, effective, rugged and safe extraction technique to the CZE analysis of monohydroxylated metabolites of polycyclic aromatic hydrocarbons in milk. Complete resolution of 2‐hydroxyfluorenene, 1‐hydroxynaphthalene, 2‐hydroxynaphthalene, 3‐hydroxyphenanthrene, and 9‐hydroxyphenanthrene was accomplished in 4 min of electrophoretic run. Limits of detection at the parts‐per‐billion were obtained with a single solvent (acetonitrile) for metabolite extraction and sample stacking. The small sample volume (1.2 mL) and the conservative usage of chemicals provided a simple and rapid procedure for the simultaneous extraction of numerous samples. Adding 4 min of electrophoretic run per sample, it should be possible to screen ten samples in approximately 1 h of analysis time. The nanoliter extract volume required for sample injection allows for further chromatographic usage and confirmation of positive samples. The unique electrophoretic pattern of the studied metabolites demonstrates the potential for the unambiguous determination of positional isomers with very similar chromatographic behaviors and undistinguishable mass fragmentation patterns.  相似文献   

6.
In this study, a new two–step extraction procedure based on the combination of a modified quick, easy, cheap, effective, rugged, and safe extraction method with a deep eutectic solvent based microwave‐assisted dispersive liquid–liquid microextraction has been developed for the extraction of multiclass pesticides in tomato samples before their analysis by gas chromatography with flame ionization detection. In this method, initially, an aliquot of tomato is crushed and diluted with deionized water. The mixture is then passed through a filter paper and its residue and aqueous phase are separated. Afterwards, acetonitrile as an extraction/disperser solvent is passed through the filter paper containing the refuse. The analytes remained in the refuse are extracted into the acetonitrile and then the obtained extract is mixed with a deep eutectic solvent. The obtained mixture is injected into the tomato juice and placed in a microwave oven for 15 s. Consequently, a cloudy state is formed and the extractant containing the analytes are sedimented at the bottom of the tube after centrifugation. Finally, 1 μL of the sedimented phase is removed and injected into the separation system. Under the optimum conditions, limits of detection and quantification were in the ranges of 0.42–0.74 and 1.4–2.5 ng/g, respectively.  相似文献   

7.
Quick, easy, cheap, effective, rugged, and safe extraction strategies are becoming increasingly adopted in various analytical fields to determine drugs in biological specimens. In the present study, we developed two fully automated quick, easy, cheap, effective, rugged, and safe extraction methods based on acetonitrile salting-out assisted liquid-liquid extraction (method 1) and acetonitrile salting-out assisted liquid-liquid extraction followed by dispersive solid-phase extraction (method 2) using a commercially available automated liquid-liquid extraction system. We applied these methods to the extraction of 14 psychotropic drugs (11 benzodiazepines and carbamazepine, quetiapine, and zolpidem) from whole blood samples. Both methods prior to liquid chromatography–tandem mass spectrometry analysis exhibited high linearity of calibration curves (correlation coefficients, > 0.9997), ppt level detection sensitivities, and satisfactory precisions (< 8.6% relative standard deviation), accuracies (within ± 16% relative error), and matrix effects (81–111%). Method 1 provided higher recovery rates (80–91%) than method 2 (72–86%), whereas method 2 provided higher detection sensitivities (limits of detection, 0.003–0.094 ng/mL) than method 1 (0.025–0.47 ng/mL) owing to the effectiveness of its dispersive solid-phase extraction cleanup step. These fully automated extraction methods realize reliable, labor-saving, user-friendly, and hygienic extraction of target analytes from whole blood samples.  相似文献   

8.
In this study, we combined ultra-high performance liquid chromatography with tandem mass spectrometry to establish a quick, easy, cheap, effective, rugged, and safe method of detecting 21 target antibiotics in agricultural soil samples. Antibiotics were extracted with mixed solvents consisting of ethylenediaminetetraacetic acid disodium salt dihydrate and phosphoric acid citric acid buffer and acetonitrile which were purified with octadecylsilyl as an adsorbent and anhydrous sodium sulfate as a desiccant. This method was able to effectively extract all of the target antibiotics from agricultural soils, with recovery efficiencies ranging from 55 to 108% and limits of detection between 0.09–0.68 μg/kg. We also validated this new method for selectivity, sensitivity, and reliability of detecting multiple antibiotics in 12 samples. Considering the potential environmental and public health effects of antibiotics in agricultural soils, our new method can help analyze the degree of antibiotic contamination and provide valuable information for soil quality and risk assessment.  相似文献   

9.
QuEChERS method was evaluated for extraction of 16 PAHs from fish samples. For a selective measurement of the compounds, extracts were analysed by LC with fluorescence detection. The overall analytical procedure was validated by systematic recovery experiments at three levels and by using the standard reference material SRM 2977 (mussel tissue). The targeted contaminants, except naphthalene and acenaphthene, were successfully extracted from SRM 2977 with recoveries ranging from 63.5–110.0% with variation coefficients not exceeding 8%. The optimum QuEChERS conditions were the following: 5 g of homogenised fish sample, 10 mL of ACN, agitation performed by vortex during 3 min. Quantification limits ranging from 0.12–1.90 ng/g wet weight (0.30–4.70 μg/L) were obtained. The optimized methodology was applied to assess the safety concerning PAHs contents of horse mackerel (Trachurus trachurus), chub mackerel (Scomber japonicus), sardine (Sardina pilchardus) and farmed seabass (Dicentrarchus labrax). Although benzo(a)pyrene, the marker used for evaluating the carcinogenic risk of PAHs in food, was not detected in the analysed samples (89 individuals corresponding to 27 homogenized samples), the overall mean concentration ranged from 2.52 ± 1.20 ng/g in horse mackerel to 14.6 ± 2.8 ng/g in farmed seabass. Significant differences were found between the mean PAHs concentrations of the four groups.  相似文献   

10.
Microwave‐ and ultrasound‐assisted methods based on a quick, easy, cheap, effective, rugged, and safe sample preparation approach followed by high‐performance liquid chromatography with tandem mass spectrometry were developed for the simultaneous determination of eight bisphenol analogues in serum and sediment. The developed methods provided satisfactory extraction efficiency for the energy provided by microwaves and ultrasound. Compositions of commercial sorbents (primary secondary amine, MgSO4, octadecyl‐modified silica, and graphitized carbon black) were evaluated. The ultrasound‐assisted method was suited for serum using primary secondary amine, MgSO4, and octadecyl‐modified silica as sorbents and a mixture of hexane and ethyl acetate as extraction solvent. The microwave‐assisted method worked better for sediment with tetrahydrofuran and methanol as solvents and primary secondary amine, MgSO4, octadecyl‐modified silica, and graphitized carbon black as sorbents. Other experimental parameters, such as extraction temperature and time, were also optimized. The inter‐ and intraday relative standard deviations ranged from 2.7 to 5.5%. The limits of detection were between 0.1 and 1.0 ng/mL for serum and between 0.1 and 0.5 ng/g dry weight for sediment. The proposed methods were successfully applied to seven sediment and 20 human serum samples. The results showed that the developed methods were practical for the analysis and biomonitoring of bisphenols in sera and sediment.  相似文献   

11.
A suitable extraction and purification method for the simultaneous liquid chromatography–mass spectrometry (LC–MS) determination of five mycotoxins, three type A, diacetoxyscirpenol (DAS), T-2 toxin (T-2) and HT-2 toxin (HT-2), and two type B-trichothecenes, deoxynivalenol (DON) and nivalenol (NIV), has been optimised using a modified “Quick Easy Cheap Effective Rugged and Safe” (QuEChERS) method. Different solvents were studied in the extraction procedure to obtain better recoveries, which ranged from 86 to 108%, using a 85/15 (v/v) mixture of methanol/acetonitrile. The values obtained for recovery, repeatability and reproducibility of the optimized method are in agreement with Commission Directive 2005/26/EC for methods of analysis of Fusarium toxins. Finally, this optimized procedure was applied in wheat flour samples commercialized in Spain.  相似文献   

12.
A simple extraction technique has been developed for seven macrolide antibiotics in milk. The procedure involves a modified quick, easy, cheap, effective, rugged, and safe method based on acetonitrile extraction, followed by the addition of a mixture of salts (sodium sulfate, sodium chloride, and potassium carbonate) not yet reported in literature. The method was validated for tylosin and was selective, free of matrix effect, and linear in the range of 0.78–18.75 ng/mL in the final extract, corresponding to 0.125–3 times the maximum residue limit. The limit of detection, limit of quantification, decision limit, and detection capability were, respectively, 0.84, 2.79, 58.4, and 71.7 μg/kg. The overall average recovery at 25, 50, and 75 μg/kg ranged from 89–97%. Repeatability and intermediate precision expressed by relative standard deviations were below 10.5 and 12%, respectively. The extension of the validation for spiramycin, throleandomycin, oleandomycin, roxithromycin, erythromycin, and clarithromycin is under consideration since the procedure proved to be able to efficiently extract all studied macrolides, with recoveries from 74–104% at 50 μg/kg for tylosin, erythromycin, spiramycin, and oleandomycin and 20 μg/kg for throleandomycin, roxithromycin, and clarithromycin.  相似文献   

13.
In this study, a modified quick, easy, cheap, effective, rugged, and safe method combined with ultra‐high performance liquid chromatography and tandem mass spectrometry was developed for the multiclass determination of 28 plant growth regulators in various fruits. Different extraction solvents and adsorbents, including primary secondary amine, octadecylsilyl, graphitized carbon black, and zirconia‐based sorbent, were investigated. Internal calibration and isotope internal standards, chlormequat chloride‐d4, mepiquat chloride‐d6, indole‐3‐acetic acid‐d2, and forchlorfenuron‐d5 were used to improve accuracy. For method validation, good linearity, low limits of detection and quantification were obtained. At three spiked concentrations (10, 50, and 100 µg/kg), satisfactory recoveries with relative standard deviations of 2.4–17.5% were obtained for strawberries (75.2–119.8%), grapes (70.5–114.0%), tangerines (71.7–115.4%), apples (72.7–115.4%), and kiwi fruits (71.7–119.2%). Samples analysis revealed that 15.6% of the samples (n = 96) were contaminated with one or two kinds of plant growth regulators, including chlormequat chloride, forchlorfenuron, paclobutrazol, 2,4‐dichlorophenoxyacetic acid, 2‐diethylaminoethyl hexanoate, and mepiquat chloride. Similar results were obtained by ultra‐high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry, indicating the robustness, effectiveness, and suitability of the developed method for routine monitoring of plant growth regulator residues in fruits.  相似文献   

14.
A rapid and simple analytical method has been developed for the determination of hexabromocyclododecane enantiomers in chicken whole blood, based on a modified quick, easy, cheap, effective, rugged, and safe approach before liquid chromatography coupled with tandem mass spectrometry. The factors influencing performance of method were investigated by single factor experiment, and further optimized by the response surface methodology based on Box–Behnken design. The matrix effects were also evaluated by the isotopic dilution method. Under the optimal conditions, the proposed method showed good linearity within the range of 1–500 μg/L and good repeatability with relative standard deviation less than 9.5% (n = 5). The limits of detection (S/N = 3) were 0.03–0.19 μg/L. The developed method was successfully applied for the analysis of hexabromocyclododecane enantiomers in real chicken blood samples. The satisfactory recoveries ranging of 83.6–115.0% were obtained (at spiked levels of 5, 20, and 100 μg/L). The results demonstrated that the proposed method would be a practical value method for the determination of hexabromocyclododecane enantiomers in animal blood. It would be further developed with confidence to analyze other lipophilic organic pollutants in blood sample.  相似文献   

15.
A new method for simultaneous determination of 36 pesticides, including 15 organophosphorus, six carbamate, and some other pesticides in soil was developed by liquid chromatography with tandem quadruple linear ion trap mass spectrometry. The extraction and clean‐up steps were optimized based on the quick, easy, cheap, effective, rugged, and safe method. The data were acquired in multiple reaction monitoring mode combined with enhanced product ion to increase confidence of the analytical results. Validation experiments were performed in soil samples. The average recoveries of pesticides at four spiking levels (1, 5, 50, and 100 μg/kg) ranged from 63 to 126% with relative standard deviation below 20%. The limits of detection of pesticides were 0.04–0.8 μg/kg, and the limits of quantification were 0.1–2.6 μg/kg. The correlation coefficients (r2) were higher than 0.990 in the linearity range of 0.5–200 μg/L for most of the pesticides. The method allowed for the analysis of the target pesticides in the lower μg/kg concentration range. The optimized method was then applied to the test of real soil samples obtained from several areas in China, confirming the feasibility of the method.  相似文献   

16.
A method for determining amitraz and 2,4‐dimethylaniline in honey was established by using ultra‐high‐performance liquid chromatoghaphy and Q Exactive after applying quick, easy, cheap, effective, rugged, and safe extracting process. A suitable extraction method was designed to extract the amitraz and 2,4‐dimethylaniline after a suitable amount of honey samples was dissolved. A Thermo Syncronis C18 column (100 × 2.1 mm, 1.7 μm) was used for chromatographic separation of the samples. Then the two compounds were quantitatively analyzed via a program of Q Exactive. The linearity of amitraz and 2,4‐dimethylaniline was good in the concentration range of 0.5–100 μg/L, and the correlation coefficient R2 was >0.99. The average recovery and relative standard deviation of each component were 81.3–90.0% and 5.1–7.2%. The 24‐ and 48‐h test results showed that the sample needed to be tested within 24 h. The limit of detection was 0.1 μg/kg for amitraz and 2,4‐dimethylaniline, whereas for both the limit of quantitation was 0.3 μg/kg.  相似文献   

17.
A method for the simultaneous determination of pesticides, biopesticides and mycotoxins from organic products was developed. Extraction of more than 90 compounds was evaluated and performed by using a modified QuEChERS-based (acronym of Quick, Easy, Cheap, Effective, Rugged, and Safe) sample preparation procedure. The method was based on a single extraction with acidified acetonitrile, followed by partitioning with salts, avoiding any clean-up step prior the determination by ultra-high performance liquid chromatography/tandem quadrupole mass spectrometry (UHPLC–MS/MS). Validation studies were carried out in wheat, cucumber and red wine as representative matrixes. Recoveries of the spiked samples were in the range between 70 and 120% (with intra-day precision, expressed as relative standard deviation, lower than 20%) for most of the analysed compounds, except picloram and quinmerac. Inter-day precision, expressed as relative standard deviation, was lower than 24%. Limits of quantification were lower than 10 μg kg−1 and the developed method was successfully applied to the analysis of organic food products, detecting analytes belonging to the three types of compounds.  相似文献   

18.
A quick, easy, cheap, effective, rugged, and safe procedure was designed to extract pesticide residues from fruits and vegetables with a high percentage of water. It has not been used extensively for the extraction of phthalate esters from sediments, soils, and sludges. In this work, this procedure was combined with gas chromatography with mass spectrometry to determine 16 selected phthalate esters in soil. The extraction efficiency of the samples was improved by ultrasonic extraction and dissolution of the soil samples in ultra‐pure water, which promoted the dispersion of the samples. Furthermore, we have simplified the extraction step and reduced the risk of organic solvent contamination by minimizing the use of organic solvents. Different extraction solvents and clean‐up adsorbents were compared to optimize the procedure. Dichloromethane/n‐hexane (1:1, v/v) and n‐hexane/acetone (1:1, v/v) were selected as the extractants from the six extraction solvents tested. C18/primary secondary amine (1:1, m/m) was selected as the sorbent from the five clean‐up adsorbents tested. The recoveries from the spiked soils ranged from 70.00 to 117.90% with relative standard deviation values of 0.67–4.62%. The proposed approach was satisfactorily applied for the determination of phthalate esters in 12 contaminated soil samples.  相似文献   

19.
The increasing use of antibiotics has caused substantial environmental problems, which are a matter of great concern. The aim of this work was to develop a quick, easy, cheap, effective, rugged, and safe method for 20 antibiotic residues in soil. The developed method is based on extraction with acetonitrile and phosphate buffer, clean up with dispersive solid‐phase extraction adsorbent using primary secondary amine, octadecylsilane, followed by liquid chromatography with tandem mass spectrometry determination. We optimized different extraction methods and the ratio of cleanup adsorbents to achieve good recoveries at seven spiking levels that ranged from 61.4 to 118.9% with a relative standard deviation below 20% (n  = 5). The method quantification limit was in the range of 2–5 μg/kg for most analytes. Good linear regression coefficients greater than 0.990 were obtained. This method was applied for the analysis of real agricultural soil samples, confirming the feasibility of the method.  相似文献   

20.
The present paper deals with the multivariate optimization of an extraction‐purification strategy for the determination of phytoestrogens (daidzein, genistein, coumestrol, formononetin, and biochanin A) in soy‐based meat substitutes by high performance liquid chromatography with tandem mass spectrometry. For a reliable quantitation of these new concerning compounds in such a complex matrix, recovery and matrix effect must be carefully evaluated. Therefore, two sequential experimental designs were used to optimize the sample‐pretreatment of soy‐based burgers: the chosen technique was the quick, easy, cheap, effective, rugged and safe methodology, which does not require any particular facility or instrumentation. Thanks to the first screening design (Plackett‐Burman), the significant factors influencing the studied responses were identified and further investigated through a response surface design (Box‐Behnken). The optimal values of the variables (volume of extraction solvent mix/sample mass ratio and two clean‐up sorbents) led to quantitative recoveries (97–104%) and low ion suppression (matrix effect 60–93%) for all analytes. This optimized method was characterized by low detection limits (0.2–1.5 ng/g) and excellent intraday precision (RSD 2–4%). It was applied to the determination of the considered compounds in several soy‐burgers from the Italian market, detecting low ng/g levels (up to 40 ng/g) of coumestrol, formononetin, and biochanin A, and high concentrations (7.9–78 µg/g) of genistein and daidzein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号