首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High conductivity is critical for the practical applications of anion exchange membranes (AEMs) in fuel cells. In this study, a new strategy for enhanced conductivity and dimensional stability of AEMs by incorporating quaternized dendrons is proposed. Thanks to the introduced quaternized dendrons, distinct nanoscale phase separation and well-connected ion conductive channels are formed in the as-prepared membranes (PPO-QG-x). As a result, PPO-QG-x AEMs achieve high hydroxide conductivities up to 65.5 mS cm−1 at 20 °C and 121.5 mS cm−1 at 80 °C (IEC = 1.95 mmol g−1), while possessing good dimensional stability. Meanwhile, PPO-QG-x AEMs show good alkaline stability with the maximum loss in conductivity of 15.1% after treated in 2 M NaOH at 80 °C for 960 h. In addition, the single-cell assembled with PPO-QG-12 membrane exhibit a peak power density of 249.4 mW cm−2 at 60 °C. Overall, this work provides a new insight to achieve high conductivity of AEMs.  相似文献   

2.
The anion exchange membranes (AEMs) with both high ionic conductivity and alkali stability are always the research focus of the AEM fuel cells. Here, a novel nonplanar polymer for AEMs manufacture, mPBI‐TP‐x‐R, with excellent hydroxide stability and satisfactory processability is reported for the first time. The serial mPBI‐TP‐x resins with steric hindrance were prepared by copolymerization among 3,3′,4,4′‐tetraaminobiphenyl, isophthalic acid and tetraphenyl‐terephthalic acid (TP) in different ratios under microwave condensation. The copolymers mPBI‐TP‐x were quaternized at N1/N3‐sites of benzimidazole unit in backbone with alkyl groups (R?CH3, C2H5, n‐C3H7, or n‐C4H9) to prepare soluble ionomers, and the corresponding membranes in hydroxyl ion form were prepared by a solution casting method and subsequent ion‐exchange process. The chemical structure of all membranes was characterized using FTIR and 1H NMR spectroscopy. The properties of ion exchange capacity, water uptake, swelling ratio, tensile strength, ionic conductivity, and alkaline stability were measured. Among the prepared membranes, the mPBI‐TP‐15%‐(n‐Bu) exhibited the excellent alkaline stability (only degradation ca. 5% under 1M NaOH aqueous solution at 60 °C for 800 h) and satisfactory OH? conductivity (46.66 mS/cm at 80 °C). The current research provides a useful exploration to commercial application of alkaline fuel cell. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1087–1096  相似文献   

3.
New anion exchange membranes are prepared by heat-treating the blend base membranes of chloroacetylated poly(2,6-dimethyl-1,4-phenyleneoxide)(CPPO)/bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO). A partially inter-crosslinked structure can be formed therein via a Friedel–Crafts reaction without adding any crosslinking reagent or catalyst. FT-IR and NMR analyses are used to confirm this inter-crosslinking structure and quantify the crosslinking distribution. Physical properties, such as toughness and thermal stability, are enhanced remarkably due to this heat treatment. Furthermore, the final membranes exhibit a high hydroxyl conductivity (up to 0.032 S cm−1 at 25 °C) and extremely low methanol permeability (1.26–1.04 × 10−7 cm2 s−1), which match the requirements for application in low temperature direct methanol alkaline fuel cells (DMAFCs).  相似文献   

4.
Various anion exchange membranes containing the 4,4′-bipyridine moiety as anion exchange groups were prepared from membranous copolymers of chloromethylstyrene and divinylbenzene and membranes of chloromethylated polysulfone and 4,4′-bipyridine. After evaluating the electrochemical properties of the obtained anion exchange membranes, the effect of membrane species on the generation of a photovoltage was examined by irradiation using a xenon lamp. The membranes swelled with ethylene glycol were clamped between two ITO electrodes and sealed by adhesive. The generated photovoltage and photocurrent from about a 120 μm thick membrane were about 80 mV and 400 nA, respectively, in a 200K Ω load resistance, though dependent of membrane species. The voltage decreased with increasing crosslinking by the divinylbenzene in the copolymer membranes. The effect of counter ion species on the voltage was examined and a chloride ion form of membrane showed the highest photovoltage. The membranes with different thicknesses, which were prepared from polysulfone derivatives, were evaluated and the voltage decreased with decreasing thickness. Even a porous membrane from polysulfone derivatives showed a photovoltage though a porous membrane in which a methyl viologen ethylene glycol solution had been impregnated did not have a stable voltage. Also, the anion exchange membrane containing the benzyl trimethylammonium moiety, which is the conventional anion exchange groups, did not show a high and stable photovoltage upon photoirradiation. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Membranes based on cationic polymers that conduct anions are important for enabling alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. Anion exchange membranes with poly(arylene ether sulfone) backbones are demonstrated by two routes: chloromethylation of commercially available poly(sulfone)s or radical bromination of benzylmethyl moieties in poly(sulfone)s containing tetramethylbisphenol A monomer residues. Polymers with tethered trimethylbenzyl ammonium moieties resulted from conversion of the halomethyl groups by quaternization with trimethyl amine. The water uptake of the chloromethylated polymers was dependent on the type of poly(sulfone) backbone for a given IEC. Bisphenol A-based Udel® poly(sulfone) membranes swelled in water to a large extent while membranes from biphenol-based Radel® poly(sulfone), a stiffer backbone than Udel, only showed moderate water uptake. The water uptake of cationic poly(sulfone)s was further reduced by synthesizing tetramethylbisphenol A and 4,4′-biphenol-containing poly(sulfone) copolymers where the ionic groups were clustered on the tetramethylbisphenol A residues. The conductivity of all samples scaled with the bulk water uptake. The hydration number of the membranes could be increased by casting membranes from the ionic form polymers versus converting the halomethyl form cast polymers to ionic form in the solid state. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1790–1798, 2013  相似文献   

6.
A membranous copolymer crosslinked with divinylbenzene reacted with N,N,N′,N′-tetra-methylethylenediamine, N,N,N′,N′-tetramethyl-1,3-propanediamine, and N,N,N′,N′-tetramethyl-1,6-hexanediamine to prepare highly crosslinked anion exchange membranes. More than 80% of both tertiary amino groups of the diamines reacted with chloromethyl groups of the membrane to form crosslinkage. After formation of the high crosslinkage of the membrane was confirmed with dialysis of a neutral molecule, electrochemical properties of the obtained membranes (mainly, relative transport number between two anions in electrodialysis) were evaluated: nitrate ions to chloride ions, sulfate ions to chloride ions, fluoride ions to chloride ions, and bromide ions to chloride ions. Though larger anions, in general, were difficult to permeate through the membranes due to high crosslinkage, the number of methylene groups of the diamines (which means the increase in hydrophobicity of anion exchange groups) also affected the relative transport number between two anions. The lower the hydration of anions, the higher the relative transport number of the anions through the membranes with the hydrophobic anion exchange groups. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Anion exchange membranes with pyridinum groups and various pyridinium derivative groups were prepared from a copolymer membrane composed of chloromethylstyrene and divinylbenzene, and pyridine and pyridine derivatives. The anion exchange membranes obtained showed excellent electrochemical properties in electrodialysis. The transport numbers of sulfate ions, bromide ions, nitrate ions, and fluoride ions relative to chloride ions were evaluated in connection with the species of a substituent and the position of the substituent in the pyridinium groups. In general, when a hydrophilic substituent (methanol groups) existed at the 2-position of the pyridinium groups, nitrate ions and bromide ions, which are less hydrated, permeated through the membranes with difficulty, and sulfate ions permeated selectively through the membranes. On the other hand, when hydrophobic groups, for example, ethyl groups, existed at the 2-position of the pyridinium groups, bromide ions and nitrate ionspermeated selectively through the membranes and fluoride ions had difficulty permeating through the membranes. The carbon number of the alkyl chain of 4-alkyl pyridinium groups also affected permeation of nitrate ions and bromide ions due to the change in hydrophilicity of the membranes. Though the hydration of the anions and the species of the substituent at the 2-position of the pyridinium groups were related to selective permeation of the anion through the membranes, permeation of sulfate ions was not as sensitive to the hydrophilicity of the membranes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 49–58, 1998  相似文献   

8.
Heterogeneous membranes of Fe(III)-Zr(IV), Cr(III)-Zr(IV) mixed hydrous oxides and one doped with Sn(II) ion have been prepared using polystyrene as a binding material. Functional properties like water content, porosity, swelling, electrolyte absorption and conductance of these membranes have been determined in various anionic forms and correlated with their electroanalytical selectivity.  相似文献   

9.
10.
This paper presents two facile methods to achieve functionalization of isotactic polypropylene (i‐PP) by azide and alkyne groups. One method comprises metallocene‐catalyzed isospecific propylene polymerization with dialkylzinc as chain transfer agent to produce iodo‐terminated i‐PP, which can be transformed to azide‐terminated i‐PP. The other utilizes hydroxyl‐grafted i‐PP as a raw material to react with bis (trichloromethyl)carbonate and propargyl amine, generating grafted alkyne groups. Both approaches are effective, controllable and safe. The azide‐terminated and alkyne‐grafted i‐PP are readily applicable to click chemistry for construction of new i‐PP architecture, e.g. long‐chain branched i‐PP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This contribution describes the ring opening metathesis polymerization of a sulfonyl fluoride decorated polynorbornene and its postsynthetic modification using the sulfur-fluoride exchange “click” reaction.  相似文献   

12.
The selective transport of ions has crucial importance in biological systems as well as modern‐day energy devices, such as batteries and fuel cells, and water purification membranes. Control over ion movement can be exerted by ligation, ion channel dimensions, solvation, and electrostatic interactions. Polyelectrolyte hydrogels can provide aligned pathways for counter ion transport but lack mechanical integrity, while polyelectrolyte membranes typically suffer from the absence of an ion transport channel network. To develop polymer membranes for improved ion transport, we present the design of a novel material that combines the advantages of aligned pathways found in polyelectrolyte hydrogel and mechanical robustness in conventional membranes. The ionic species were organized via controlled copolymerization of a quaternizable monomer. Additionally, dimensional stability was then incorporated through a cast/crosslinking method to lock in the network of connected cationic groups. This strategy resulted in dramatically enhanced ion transport, as characterized by ionic conductivities (>80 mS/cm for Cl, and ∼200 mS/cm for OH). © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 618–625  相似文献   

13.
A series of poly(ether sulfone)‐based anion exchange membranes (AEMs), tethering with guanidinium side chains with different spacers, were synthesized via azide‐alkyne cycloaddition, deprotection, and the subsequent ion exchange reactions. The designed polymer structures were verified by the 1H NMR spectra. Because of the appropriate water uptake and formation of interconnected ionic clusters, the GPES‐3C with propyl spacer showed higher conductivity than the GPES‐1C and GPES‐9C, with methylene and nonyl spacers, respectively. Comparatively, the GPES‐EO AEM with two ethylene oxide (EO) spacers exhibited even higher conductivity, these can be interpreted by interconnectivity of ionic channels and hydrophilicity nature of the EO spacer. Additionally, although the GPES membranes displayed sufficient thermal stability, the chemical stability of as‐prepared materials needs to be much improved for fuel cell applications. Overall, these results demonstrated that the properties of “pendent‐type” AEM can be tuned facilely by the spacer types and lengths. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1313–1321  相似文献   

14.
Robust hydroxide conducting membranes are required for long‐lasting, low‐cost solid alkaline fuel cells (AFCs). In this study, we synthesize Nafion‐based anion exchange membranes (AEMs) via amination of the Nafion precursor membrane with 1,4‐dimethylpiperazine. This initial reaction produces an AEM with covalently attached dimethylpiperazinium cations neutralized with fluoride anions, while a subsequent ion exchange reaction produces a hydroxide ion conducting membrane. These AEMs possess high thermal stability and different thermal transition temperatures compared to Nafion, while small‐angle X‐ray scattering reveals a similar ionic morphology. The hydroxide ion conductivity of the Nafion‐based AEM is fivefold lower than the proton conductivity of Nafion at 80 °C and 90% relative humidity. More importantly, the hydroxide conductivity is insensitive to drying and rehydrating the membrane, which is atypical of other AEMs with quaternary ammonium cations. The high chemical and thermal stability of this hydroxide conducting Nafion‐based AEM provides a promising alternative for AFCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

15.
Metal cation‐based anion exchange membranes (AEMs) are a unique class of materials that have shown potential to be highly stable AEMs with competitive conductivities. Here, we expand upon previous work to report the synthesis of crosslinked nickel cation‐based AEMs formed using the thiol–ene reaction. These thiol–ene‐based samples were first characterized for their morphology, both with and without nickel cations, where the nickel‐containing membranes demonstrated a disordered scattering peak characteristic of ionic clusters. The samples were then characterized for their water uptake, chemical and mechanical stability, and conductivity. They showed a combination of high water content and extreme brittleness, which also resulted in fairly low conductivity. The brittleness resulted from large water swelling as well as the need for each nickel cation to act as a crosslinker, necessary with the current nickel‐coordination chemistry. Therefore, increasing the ion exchange capacity (IEC) for these types of AEMs, important for enhancing conductivity, also increased the crosslink density. The low conductivity and brittleness seen in this work demonstrated the need to develop non‐crosslinking metal‐complexes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 328–339  相似文献   

16.
Using the preirradiation technique a kinetic study of the grafting of the 4-vinyl pyridine (V4P) and an aliphatic ammonium monomer (ALAM) onto the copolymer film of ethylene–tetrafluoroethylene (ETFE) has been performed. The influence of dose, temperature, and concentration of monomer, reticular agent, and inhibitor were investigated. The results are discussed on the basis of the interactions between monomer diffusibility and viscosity of the medium. The characteristics of some membranes were determined. Their applicability to the recovery of acid by dialysis is demonstrated.  相似文献   

17.
Anion exchange membranes containing N‐isopropylacrylamide as a component were prepared, and their electrochemical properties were examined. The membranes were crosslinked with ethylene glycol dimethacrylate and contained weakly basic or strongly basic anion exchange groups. The dependence of electrochemical properties of the membranes (electrical resistance, transport number of anions, water content, and reduced osmotic flux) on temperature was completely different from those of the anion exchange membrane without N‐isopropylacrylamide. For example, the reduced osmotic flux decreased with increasing temperature until 40°C, and the transport number of chloride ions increased with increasing temperature from 25.0°C, although those of the conventional membrane monotonously increased or decreased. The transport numbers of various anions relative to chloride ions in electrodialysis were evaluated at a different temperature. Although the transport numbers between anions did not change appreciably in the conventional membrane with temperature, those of the anion exchange membranes with N‐isopropylacrylamide changed with a temperature dependent on the hydration degree of anions: permeation of less‐hydrated anions such as nitrate and bromide ions compared with chloride ions increased with increasing temperature, and that of strongly hydrated anions such as sulfate and fluoride ions decreased with increasing temperature. This is based on the increase or decrease in uptake of the anions in the membrane with the change in temperature because hydrophilicity of the membranes changes with temperature due to the apparent aggregation of isopropyl groups in the membranes. And the change in electrochemical properties and transport numbers of various anions relative to chloride ions with temperature was completely reversible with increasing or decreasing temperature. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 793–804, 1999  相似文献   

18.
In this study, new anion exchange membranes (AEM) based on crosslinked polybenzimidazole (m-PBI) with quaternary ammonium groups, crosslinkable allyl groups, and hydrophobic ethyl groups as side chains are synthesized and characterized. The AEMs are crosslinked by thermal thiol-ene reaction using a dithiol crosslinker. The ion exchange capacity (IEC) values and crosslinking density were controlled by the number of quaternary ammonium groups and allyl groups, respectively. The introduction of ethyl groups improved the solubility of ionic PBIs even at very low IEC values by eliminating the hydrogen bonding interaction of imidazole rings. This method allows ionic PBIs with broad IEC values, from 0.75 to 2.55 mmol/g, to be prepared. The broad IEC values were achieved by independently controlling the numbers of quaternary ammonium groups, allyl groups, and hydrophobic ethyl groups during preparation. The crosslinked ionic PBIs revealed hydroxide conductivity from 16 to 86 mS/cm at 80°C. The wet membranes also showed excellent mechanical strength with tensile strength of 12.2 to 20.1 MPa and Young's Modulus of 0.67 to 1.45 GPa. The hydroxide conductivity of a crosslinked membrane (0.40Q0.60Et1.00Pr, IEC = 0.95 mmol/g) decreased only 7.9% after the membranes was immersed in a 1.0 M sodium hydroxide solution at 80°C for 720 h. A single fuel cell based on this membrane showed a maximum peak power density of 136 mW/cm2 with a current density of 377 mA /cm2 at 60°C.  相似文献   

19.
A facile, efficient approach for preparation of functionalized aromatic polysulfones by postpolymerization modification with thiol‐ene click chemistry is described. The key synthetic strategy is to incorporate a pendant vinyl ether group into polysulfones as a reactive precursor with controlled degrees of functionalization. Synthetic utility of the pendant alkenyl group is demonstrated by generating diverse polymer derivatives using thiol‐ene functionalization including glycosylated polysulfone. The highly reactive alkene platform in the polymer affords convenient, metal‐free, and azide‐free click transformations to create diverse ranges of new functionalized polysulfones that could be applied in various applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3237–3243  相似文献   

20.
This short review is meant to provide the reader with highlights in anion exchange membrane research, describe current needs in the field, and point out promising directions for future work. Anion exchange membranes (AEMs) provide one possible route to low platinum or platinum-free fuel cells with the potential for facile oxidation of complex fuels beyond hydrogen and methanol. AEMs and related stable cationic polymers also have applications in energy storage and other electrochemical technologies such as water electrolyzers and redox flow batteries. While anion exchange membranes have been known for a long time in water treatment applications, materials for electrochemical technology with robust mechanical properties in thin film format have only recently become more widely available. High hydroxide and bicarbonate anion conductivity have been demonstrated in a range of AEM formats, but intrinsic stability of the polymers and demonstration of long device lifetime remain major roadblocks. Novel approaches to stable materials have focused on new types of cations that employ delocalization and steric shielding of the positive center to mitigate nucleophilic attack by hydroxide. A number of promising polymer backbones and membrane architectures have been identified, but limited device testing and a lack of understanding of the degradation mechanisms in operating devices is slowing progress on engineered systems with alkaline fuel cell technology. Our objective is to spur more research in this area to develop fuel cell systems that approach the costs of inexpensive batteries for large-scale applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1727–1735, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号