首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultra wide-field lens-free monitoring of cells on-chip   总被引:1,自引:0,他引:1  
We experimentally and theoretically demonstrate the proof-of-principle of a new lens-free cell monitoring platform that involves using an opto-electronic sensor array to record the shadow image of cells onto the sensor plane. This technology can monitor/count cells over a field-of-view that is more than two orders of magnitude larger than that of a conventional light microscope. Furthermore, it does not require any mechanical scanning or optical elements, such as microscope objectives or lenses. We also show that this optical approach can conveniently be combined with microfluidic channels, enabling parallel on-chip monitoring of various different cell types, e.g., blood cells, NIH-3T3 fibroblasts, murine embryonic stem cells, AML-12 hepatocytes. An important application of this approach could be a miniaturized point-of-care technology to obtain CD4 T lymphocyte counts of HIV infected patients in resource limited settings.  相似文献   

2.
In this paper, the fabrication and characterization of PDMS 2D-optical lenses are reported. These lenses are designed in order to improve the performance of fluorescent spectroscopy detection performed on a portable chip using optical fibers. The fabrication process of the PDMS layer is first detailed, and the patterns are then checked with a SEM. By comparing various interfacial structures, it is shown that the beam properties of the light coming out from the fiber can be modified depending on the lens curvature radius. As a consequence, for a constant dye concentration, the use of such lenses can increase the intensity of fluorescent response close to the fiber or far from the fiber, compared to the same design with a flat interface. This excitation improvement corresponding to a stronger response from the dye then consequently leads to around three times higher sensitivity of the on-chip detection method for fluorescent spectroscopy.  相似文献   

3.
Quantum dot thermal imaging has been used to analyse the chromatic dependence of laser-induced thermal effects inside optofluidic devices with monolithically integrated near-infrared waveguides. We demonstrate how microchannel optical local heating plays an important role, which cannot be disregarded within the context of on-chip optical cell manipulation. We also report on the thermal imaging of locally illuminated microchannels when filled with nano-heating particles such as carbon nanotubes.  相似文献   

4.
The realization that modulated light pulses can be transported in a confined fashion over long distances within a structure that comprises a controlled spatial distribution of the refractive index n—as in optical fibres and waveguides—has, without doubt, underpinned the telecommunications revolution witnessed during the 20th century. The refractive index n, quantifying how light propagates in a given medium, as a consequence, has become one of the most important materials properties in designing photonics products. The other key characteristic for most optical and photonic applications is the amount of light that is absorbed by a material, expressed as the extinction coefficient κ. Although a range of organic/inorganic hybrid materials have been advanced with tunable refractive index, only a few systems combine a high n, sufficiently low κ and straightforward sample preparation to allow simple fabrication of highly transparent, low‐loss structures. Here, we present a hybrid material that can be readily produced in water via a one‐pot synthesis directly from commercially available, low‐cost precursors. Moreover, our hybrid material can be solution‐processed, yielding systems of an extinction coefficient <0.01, and a refractive index, which can be controlled to adopt values between 1.5 to at least 2.1. Unprecedentedly, simple post‐deposition procedures such as thermal annealing or irradiation with high‐intensity UV‐light allow adjusting n also after film fabrication, offering an exceptional degree of freedom in designing and tailoring also more complex photonic architectures or planar wave‐guides, for example, through creation of in‐plane refractive index patterns. As a proof‐of‐concept, we demonstrate fabrication of waveguides based on local heating. The versatility of our materials is further illustrated by the production of lenses and dielectric filters of ~100% reflectivity in a given wavelength regime. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 000: 000–000, 2011  相似文献   

5.
Roos P  Skinner CD 《The Analyst》2003,128(6):527-531
Recently it was demonstrated that a collimated Gaussian beam can be converted to a flattop beam using a Keplerian beam reshaper consisting of two aspheric lenses. Here, using the same optical system, we demonstrate that this flattop profile can be maintained when used in a confocal detection system that focuses the laser beam into a diameter of only 33 microm. The intensity profile of the reshaped beam was determined by imaging the excitation of a constant stream of fluorescein inside a microfluidic device. The resulting shape had a 6.38% RSD intensity across the flat profile when imaged with a CCD camera. This flat illumination profile was then used in a two bead multiplex immunoassay where the colour combination and/or the intensities can be used to determine the presence of an antigen. Detection limits of TNF-alpha and IL-6 were comparable with standard ELISA immunoassays.  相似文献   

6.
Fluorescence cross-correlation spectroscopy (FCCS) is a highly sensitive fluorescence technique with distinct advantages in many bioanalytical applications involving interaction and binding of multiple components. Due to the use of multiple beams, bulk optical FCCS setups require delicate and complex alignment procedures. We demonstrate the first implementation of dual-color FCCS on a planar, integrated optofluidic chip based on liquid-core waveguides that can guide liquid and light simultaneously. In this configuration, the excitation beams are delivered in predefined locations and automatically aligned within the excitation waveguides. We implement two canonical applications of FCCS in the optofluidic lab-on-chip environment: particle colocalization and binding/dissociation dynamics. Colocalization is demonstrated in the detection and discrimination of single-color and double-color fluorescently labeled nanobeads. FCCS in combination with fluorescence resonance energy transfer (FRET) is used to detect the denaturation process of double-stranded DNA at nanomolar concentration.  相似文献   

7.
Fei P  Chen Z  Men Y  Li A  Shen Y  Huang Y 《Lab on a chip》2012,12(19):3700-3706
We developed a simple method to construct liquid-core/PDMS-cladding optical waveguides through pressurized filling of dead-ended micro-channels with optical fluids. The waveguides are in the same layer as microfluidic channels which greatly simplifies device fabrication. With proper contrast between the refractive index of the core and cladding, the transmission loss of the waveguides is less than 5 dB cm(-1). We also developed a method to create flat and optically clear surfaces on the sides of PDMS devices in order to couple light between free-space and the waveguides embedded inside the chip. With these newly developed techniques, we make a compact flow cytometer and demonstrate the fluorescence counting of single cells at a rate of up to ~50 cell s(-1) and total sample requirement of a few microlitres. This method of making liquid-core optical waveguides and flat surfaces has great potential to be integrated into many PDMS-based microsystems.  相似文献   

8.
Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.  相似文献   

9.
Flexible organic single crystals are evolving as new materials for optical waveguides that can be used for transfer of information in organic optoelectronic microcircuits. Integration in microelectronics of such crystalline waveguides requires downsizing and precise spatial control over their shape and size at the microscale, however that currently is not possible due to difficulties with manipulation of these small, brittle objects that are prone to cracking and disintegration. Here we demonstrate that atomic force microscopy (AFM) can be used to reshape, resize and relocate single-crystal microwaveguides in order to attain spatial control over their light output. Using an AFM cantilever tip, mechanically compliant acicular microcrystals of three N-benzylideneanilines were bent to an arbitrary angle, sliced out from a bundle into individual crystals, cut into shorter crystals of arbitrary length, and moved across and above a solid surface. When excited by using laser light, such bent microcrystals act as active optical microwaveguides that transduce their fluorescence, with the total intensity of transduced light being dependent on the optical path length. This micromanipulation of the crystal waveguides using AFM is non-invasive, and after bending their emissive spectral output remains unaltered. The approach reported here effectively overcomes the difficulties that are commonly encountered with reshaping and positioning of small delicate objects (the “thick fingers” problem), and can be applied to mechanically reconfigure organic optical waveguides in order to attain spatial control over their output in two and three dimensions in optical microcircuits.  相似文献   

10.
Flexible organic single crystals are evolving as new materials for optical waveguides that can be used for transfer of information in organic optoelectronic microcircuits. Integration in microelectronics of such crystalline waveguides requires downsizing and precise spatial control over their shape and size at the microscale, however that currently is not possible due to difficulties with manipulation of these small, brittle objects that are prone to cracking and disintegration. Here we demonstrate that atomic force microscopy (AFM) can be used to reshape, resize and relocate single‐crystal microwaveguides in order to attain spatial control over their light output. Using an AFM cantilever tip, mechanically compliant acicular microcrystals of three N‐benzylideneanilines were bent to an arbitrary angle, sliced out from a bundle into individual crystals, cut into shorter crystals of arbitrary length, and moved across and above a solid surface. When excited by using laser light, such bent microcrystals act as active optical microwaveguides that transduce their fluorescence, with the total intensity of transduced light being dependent on the optical path length. This micromanipulation of the crystal waveguides using AFM is non‐invasive, and after bending their emissive spectral output remains unaltered. The approach reported here effectively overcomes the difficulties that are commonly encountered with reshaping and positioning of small delicate objects (the “thick fingers” problem), and can be applied to mechanically reconfigure organic optical waveguides in order to attain spatial control over their output in two and three dimensions in optical microcircuits.  相似文献   

11.
We demonstrate the fabrication and characterization of a novel, inexpensive microchip capable of laser induced fluorescence (LIF) detection using integrated waveguides with built-in optical filters. Integrated wavelength-selective optical waveguides are fabricated by doping poly(dimethysiloxane) (PDMS) with dye molecules. Liquid-core waveguides are created within dye-doped PDMS microfluidic chips by filling channels with high refractive index liquids. Dye molecules are allowed to diffuse into the liquid core from the surrounding dye-doped PDMS. The amount of diffusion is controlled by choosing either polar (low diffusion) or apolar (high diffusion) liquid waveguide cores. The doping dye is chosen to absorb excitation light and to transmit fluorescence emitted by the sample under test. After 24 h, apolar waveguides demonstrate propagation losses of 120 dB cm(-1) (532 nm) and 4.4 dB cm(-1) (633 nm) while polar waveguides experience losses of 8.2 dB cm(-1) (532 nm) and 1.1 dB cm(-1) (633 nm) where 532 and 633 nm light represent the excitation and fluorescence wavelengths, respectively. We demonstrate the separation and detection of end-labelled DNA fragments using polar waveguides for excitation light delivery and apolar waveguides for fluorescence collection. We demonstrate that the dye-doped waveguides can provide performance comparable to a commercial dielectric filter; however, for the present choice of dye, their ultimate performance is limited by autofluorescence from the dye. Through the detection of a BK virus polymerase chain reaction (PCR) product, we demonstrate that the dye-doped PDMS system is an order of magnitude more sensitive than a similar undoped system (SNR: 138 vs. 9) without the use of any external optical filters at the detector.  相似文献   

12.
We present a fully planar integrated optofluidic platform that permits single particle detection, manipulation and analysis on a chip. Liquid-core optical waveguides guide both light and fluids in the same volume. They are integrated with fluidic reservoirs and solid-core optical waveguides to define sub-picoliter excitation volumes and collect the optical signal, resulting in fully planar beam geometries. Single fluorescently labeled liposomes are used to demonstrate the capabilities of the optofluidic chip. Liposome motion is controlled electrically, and fluorescence correlation spectroscopy (FCS) is used to determine concentration and dynamic properties such as diffusion coefficient and velocity. This demonstration of fully planar particle analysis on a semiconductor chip may lead to a new class of planar optofluidics-based instruments.  相似文献   

13.
We report a portable lensless on-chip microscope that can achieve <1 μm resolution over a wide field-of-view of ~ 24 mm(2) without the use of any mechanical scanning. This compact on-chip microscope weighs ~ 95 g and is based on partially coherent digital in-line holography. Multiple fiber-optic waveguides are butt-coupled to light emitting diodes, which are controlled by a low-cost micro-controller to sequentially illuminate the sample. The resulting lensfree holograms are then captured by a digital sensor-array and are rapidly processed using a pixel super-resolution algorithm to generate much higher resolution holographic images (both phase and amplitude) of the objects. This wide-field and high-resolution on-chip microscope, being compact and light-weight, would be important for global health problems such as diagnosis of infectious diseases in remote locations. Toward this end, we validate the performance of this field-portable microscope by imaging human malaria parasites (Plasmodium falciparum) in thin blood smears. Our results constitute the first-time that a lensfree on-chip microscope has successfully imaged malaria parasites.  相似文献   

14.
We will demonstrate how optical tweezers can be combined with a microfluidic system to create a versatile microlaboratory. Cells are moved between reservoirs filled with different media by means of optical tweezers. We show that the cells, on a timescale of a few seconds, can be moved from one reservoir to another without the media being dragged along with them. The system is demonstrated with an experiment where we expose E. coli bacteria to different fluorescent markers. We will also discuss how the system can be used as an advanced cell sorter. It can favorably be used to sort out a small fraction of cells from a large population, in particular when advanced microscopic techniques are required to distinguish various cells. Patterns of channels and reservoirs were generated in a computer and transferred to a mask using either a sophisticated electron beam technique or a standard laser printer. Lithographic methods were applied to create microchannels in rubber silicon (PDMS). Media were transported in the channels using electroosmotic flow. The optical system consisted of a combined confocal and epi-fluorescence microscope, dual optical tweezers and a laser scalpel.  相似文献   

15.
We use direct femtosecond laser writing to integrate optical waveguides into a commercial fused silica capillary electrophoresis chip. High-quality waveguides crossing the microfluidic channels are fabricated and used to optically address, with high spatial selectivity, their content. Fluorescence from the optically excited volume is efficiently collected at a 90° angle by a high numerical aperture fiber, resulting in a highly compact and portable device. To test the platform we performed electrophoresis and detection of a 23-mer oligonucleotide plug. Our approach is quite powerful because it allows the integration of photonic functionalities, by simple post-processing, into commercial LOCs fabricated with standard techniques. Figure Femtosecond laser written waveguides can selectively excite fluorescence in a microfluidic channel of a commercial lab-on-a-chip. A compact scheme for on-chip detection by laser induced fluorescence is applied to capillary electrophoresis of a 23-mer Cy3-labeled oligonucleotide  相似文献   

16.
Taking the next step from individual functional components to higher integrated devices, we present a feasibility study of a lab-on-a-chip system with five different components monolithically integrated on one substrate. These five components represent three main domains of microchip technology: optics, fluidics and electronics. In particular, this device includes an on-chip optically pumped liquid dye laser, waveguides and fluidic channels with passive diffusive mixers, all defined in one layer of SU-8 polymer, as well as embedded photodiodes in the silicon substrate. The dye laser emits light at 576 nm, which is directly coupled into five waveguides that bring the light to five different locations along a fluidic channel for absorbance measurements. The transmitted portion of the light is collected at the other side of this cuvette, again by waveguides, and finally detected by the photodiodes. Electrical read-out is accomplished by integrated metal connectors. To our knowledge, this is the first time that integration of all these components has been demonstrated.  相似文献   

17.
In this study, an azobenzene dye, Dispersion Red 1 (DR1) was doped into the copolymers of methyl methacrylate(MMA) and butyl acrylate(BA) to obtain five bulk composites with varied ratios of methyl methacrylate to butyl acrylate. An experimental setup, in which the He-Ne laser produced signal beams and Ar+ laser, the pump beams was employed to investigate the photoinduced anisotropic properties of these samples. The results show that, the lower rigidity of the copolymers chains caused by the increased BA content would lead to a lower extent of birefringence for the samples. With the increased pump beam power, the extent of birefringence first slightly increased, reached a maximum value, and then decreased. These increases and then decreases would be caused by the co-effects of both orientation and saturation mechanism. On the other hand, the optical dichroism properties can be detected in the bulk samples with photoinduced anisotropic property. The birefringence and dichroism properties exhibited by the dye-doped bulk composites have great potential in optical devices and optical communication systems; in particular, these bulk polymeric materials are very important for three-dimensional optical applications.  相似文献   

18.
Second-harmonic generation in the guided waveguide configuration is very attractive because a high fundamental power density can be coupled over long propagation length therefore remarkably high conversion efficiencies can be expected compared to bulk materials.1 Organic SHG devices in optical waveguides have not been developed extensively because of the difficulty encountered in phase-matching. To avoid this problem, the use of an artificial periodic structure, Cerenkov radiation, and non-colinear light path geometry have already been demonstrated. Recently, we reported an electric field-induced dynamic phase-matching in a guided wave configuration using a main-chain polymer in which the effective phase-matching thickness can be controlled by an applied electric field.2 This technique is able to increase the waveguide dimension tolerances of phase-matching condition. In the case of a main-chain polymer, the thermal optic effects due to the heating prevent to satisfy the optimum phase-matching conditions, which causes a reduction in the conversion efficiency of devices. In order to overcome this problem, we have synthesized novel low glass transition temperature (Tg) nonlinear optical (NLO) polymers. In this presentation, we will discuss an electric field-induced dynamic phase-matching of a multilayer waveguide at room temperature using a low Tg NLO polymer which can increase both the waveguide dimension tolerances and overlap integral. Using this technique, efficient phase-matched SHG was generated from p-nitroaniline grafted NLO materials. The dimension tolerance of waveguides under an electric field will be described.  相似文献   

19.
Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate that these first order distributed feedback lasers can be operated for more than 90 min at a pulse repetition rate of 2 Hz without fluidic pumping. Ultra-high output pulse energies of more than 10 μJ and laser thresholds of 2 μJ are achieved for resonator lengths of 3 mm. By introducing comparatively large on-chip dye solution reservoirs, the required exchange of dye molecules is accomplished solely by diffusion. Polymer chips the size of a microscope cover slip (18 × 18 mm(2)) were fabricated in batches on a wafer using a commercially available polymer (TOPAS(?) Cyclic Olefin Copolymer). Thermal imprinting of micro- and nanoscale structures into 100 μm foils simultaneously defines photonic resonators, liquid-core waveguides, and fluidic reservoirs. Subsequently, the fluidic structures are sealed with another 220 μm foil by thermal bonding. Tunability of laser output wavelengths over a spectral range of 24 nm on a single chip is accomplished by varying the laser grating period in steps of 2 nm. Low-cost manufacturing suitable for mass production, wide laser tunability, ultra-high output pulse energies, and long operation times without external fluidic pumping make these on-chip lasers suitable for a wide range of lab-on-a-chip applications, e.g. on-chip spectroscopy, biosensing, excitation of fluorescent markers, or surface enhanced Raman spectroscopy (SERS).  相似文献   

20.
In this paper we describe a compact fluorescence detection system for on-chip analysis of beads, comprising a low-cost optical HD-DVD pickup. The complete system consists of a fluorescence detection unit, a control unit and a microfluidic chip containing microchannels and optical markers. With these markers the laser beam of the optical pickup can be automatically focused at the centre of the microchannel. With the complete system a two-dimensional fluorescent profile across the channel width can be obtained such that there is no need for hydrodynamic or electrokinetic focusing of the particles in a specific part of the channel. Fluorescent μm sized beads suspended in medium have been detected with the system. Since on both sides of the main beam two additional laser beams at a known distance are generated, also the velocity of individual beads has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号