首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tubulin protein is the fundamental unit of microtubules, and comprises of α and β subunits arranged in an alternate manner forming protofilaments. These longitudinal protofilaments are made up of intra- (α-β) and inter-dimer (β-α) interactions. Literature review confirms that GTP hydrolysis results in considerable structural rearrangement within GTP binding site of β-α dimer interface after the release of γ phosphate. In addition to this, the intra-dimer interface exhibits structural rigidity which needs further investigation. In this study, we explored the reasons for the flexibility and the rigidity of the β-α dimer and the α-β dimer respectively through molecular simulation and Anisotropic Normal Mode based analysis. As per the sequence alignment report, two glycine residues (Gly96 and Gly98) were observed in the T3 loop of the β subunit which get substituted by Asp98 and Ala100 in the T3 loop of the α subunit. The higher mobility of glycine residues contributes to the flexibility of the T3 loop of inter-dimer when they come in direct contact with the GTPase Activating Protein (GAP) domain of the subunit. This was confirmed through RMSD, RMSF and Radius of Gyration based studies. Conversely, the intra-dimer exhibited a lower mobility in the absence of glycine residues. As per ANM based analysis, positive domain correlations were observed between T3 loop and GAP domain of intra- and inter- dimeric contact regions. However, these correlation motions were higher in the intra-dimer as compared to the inter-dimer interface. Thus on the basis of our findings, we hypothesize that the higher flexibility of T3 loop and the GAP domain of the inter-dimer is required for structural rearrangement and protofilament stability during hydrolysis. Furthermore, the slightly rigid nature of the T3 loop and the GAP domain of the intra-dimer assists in enhancing the monomer-monomer interaction through the higher positive domain correlation.  相似文献   

2.
《Chemistry & biology》1998,5(5):241-254
Background: Human chorionic gonadotropin (hCG), lutropin, follitropin, and thyrotropin act as αβ heterodimers to control reproduction and thyroid function. The α and β subunits of these proteins are divided into three loops (α1,α2,α3; β1,β2,β3) by cysteine knots and the heterodimer is stabilized by 20 β-subunit residues wrapped around α2 like a seatbelt. Understanding how these hormones interact with their receptors, a matter of considerable dispute, would facilitate design of pro- and anti-fertility agents.Results: By swapping α2 for β2 and vice versa and, in some cases, adding an amino-terminal coiled-coil dimerization domain, we prepared homodimeric analogs that have the conformation found in each ‘half’ of hCG. Homodimers containing loops β1,α2,β3 and none, part, or all of the seatbelt stimulated signal transduction to the same extent as hCG, albeit with lower potency. Those containing α1,α2,α3 were inactive.Conclusions: The activities of homodimers containing the β1,α2,β3 groove exceed those of other minimized analogs more than 100–1000-fold, suggesting this portion of the hormone forms the major receptor contact. The discovery that glycoprotein hormone heterodimers can be converted to functional homodimers supports the proposal that this protein family evolved from an active homodimeric ancestor by gene duplication and acquisition of mutations to loop 2 that prevent homodimerization. This approach to protein minimization should be applicable to other proteins composed of architecturally related subunits, including those that might have arisen by gene duplication.  相似文献   

3.

Background

Vibrio carchariae chitinase A (EC3.2.1.14) is a family-18 glycosyl hydrolase and comprises three distinct structural domains: i) the amino terminal chitin binding domain (ChBD); ii) the (α/β)8 TIM barrel catalytic domain (CatD); and iii) the α + β insertion domain. The predicted tertiary structure of V. carchariae chitinase A has located the residues Ser33 & Trp70 at the end of ChBD and Trp231 & Tyr245 at the exterior of the catalytic cleft. These residues are surface-exposed and presumably play an important role in chitin hydrolysis.

Results

Point mutations of the target residues of V. carchariae chitinase A were generated by site-directed mutagenesis. With respect to their binding activity towards crystalline α-chitin and colloidal chitin, chitin binding assays demonstrated a considerable decrease for mutants W70A and Y245W, and a notable increase for S33W and W231A. When the specific hydrolyzing activity was determined, mutant W231A displayed reduced hydrolytic activity, whilst Y245W showed enhanced activity. This suggested that an alteration in the hydrolytic activity was not correlated with a change in the ability of the enzyme to bind to chitin polymer. A mutation of Trp70 to Ala caused the most severe loss in both the binding and hydrolytic activities, which suggested that it is essential for crystalline chitin binding and hydrolysis. Mutations varied neither the specific hydrolyzing activity against pNP-[GlcNAc]2, nor the catalytic efficiency against chitohexaose, implying that the mutated residues are not important in oligosaccharide hydrolysis.

Conclusion

Our data provide direct evidence that the binding as well as hydrolytic activities of V. carchariae chitinase A to insoluble chitin are greatly influenced by Trp70 and less influenced by Ser33. Though Trp231 and Tyr245 are involved in chitin hydrolysis, they do not play a major role in the binding process of crystalline chitin and the guidance of the chitin chain into the substrate binding cleft of the enzyme.  相似文献   

4.
Our goal was to generate the extracellular domain of gamma‐aminobutyric acid type A receptor (GABAA receptor) by comparative modeling and to study the interaction of zolpidem with the GABAA receptor. The modeling strategy was verified to provide reasonable 3‐dimensional coordinates. These coordinates helped to combine all the subunits well. The benzodiazepine (BZ) binding site was located in a binding pocket between the α1 and γ2 subunits of the GABAA receptor. Zolpidem was selected to dock into the binding site. In our study, the residues of the binding pocket were suggested to be αHis129, αTyr187, αGly228, αThr234, αTyr237, γMet96, γPhe116, γSer130, γGly143, and γMet169. By the calculation of the docking module, the conformation of zolpidem docking in the BZ binding site was investigated. A hydrogen bond was found at γArg136 when zolpidem's conformation was in rank 2 of the docking score. The contracted binding pocket showed residues at αHis129, αTyr187, αGly228, αTyr237, γPhe116, and γMet169. Zolpidem docking in a contracted binding pocket might generate a hydrogen bond in α His 129.  相似文献   

5.
Sea buckthorn is a natural food ingredient rich in carotenoids, tocopherols, sterols, flavonoids, lipids, vitamins, tannins and minerals. In this study, we investigated the themostability of the complex formed between α-lactalbumin (α-LA) with carotenoids from sea buckthorn berries extract (CSB) in the temperature range of 25°C to 100°C. The heat induced conformational changes of the α-LA-CSB complex were studied by using fluorescence and molecular modeling techniques. Phase diagram indicated the presence of more than one structurally distinct species as an indicator that temperature influenced the conformation of α-LA. Intrinsic fluorescence studies revealed that carotenoids trapped into the core of α-LA do not bind in locations close to tryptophan (Trp) residues. The synchronous spectra indicated that the interaction between α-LA and CSB had no apparent influence on the local conformation of Trp and tyrosine (Tyr) microenvironments within protein structure. Quenching studies with acrylamide showed that Trp residues had the highest exposure at 80°C, being least accessible to quencher at 60°C. In agreement with the fluorescence spectroscopy observations, the in silico analysis at single molecules level indicated a significant increase of 46.42 Å2 and 80.07 Å2 of the total accessible surface area of Trp and Tyr residues, respectively with the temperature increase from 25°C to 90°C. Concerning the thermodynamic properties of the α-LA-β-carotene model, the molecular modeling results indicate that the thermal treatment is not favorable for preserving the stability of the complex.  相似文献   

6.
Nicotinic acetylcholine receptors (nAChRs), which are responsible for mediating key physiological functions, are ubiquitous in the central and peripheral nervous systems. As members of the Cys loop ligand-gated ion channel family, neuronal nAChRs are pentameric, composed of various permutations of α (α2 to α10) and β (β2 to β4) subunits forming functional heteromeric or homomeric receptors. Diversity in nAChR subunit composition complicates the development of selective ligands for specific subtypes, since the five binding sites reside at the subunit interfaces. The acetylcholine binding protein (AChBP), a soluble extracellular domain homologue secreted by mollusks, serves as a general structural surrogate for the nAChRs. In this work, homomeric AChBPs from Lymnaea and Aplysia snails were used as in situ templates for the generation of novel and potent ligands that selectively bind to these proteins. The cycloaddition reaction between building-block azides and alkynes to form stable 1,2,3-triazoles was used to generate the leads. The extent of triazole formation on the AChBP template correlated with the affinity of the triazole product for the nicotinic ligand binding site. Instead of the in situ protein-templated azide-alkyne cycloaddition reaction occurring at a localized, sequestered enzyme active center as previously shown, we demonstrate that the in situ reaction can take place at the subunit interfaces of an oligomeric protein and can thus be used as a tool for identifying novel candidate nAChR ligands. The crystal structure of one of the in situ-formed triazole-AChBP complexes shows binding poses and molecular determinants of interactions predicted from structures of known agonists and antagonists. Hence, the click chemistry approach with an in situ template of a receptor provides a novel synthetic avenue for generating candidate agonists and antagonists for ligand-gated ion channels.  相似文献   

7.
F1‐ATPase is an adenosine tri‐phosphate (ATP)‐driven rotary motor enzyme. We investigated the structural fluctuations and concerted motions of subunits in F1‐ATPase using molecular dynamics (MD) simulations. An MD simulation for the α3β3γ complex was carried out for 30 ns. Although large fluctuations of the N‐terminal domain observed in simulations of the isolated βE subunit were suppressed in the complex simulation, the magnitude of fluctuations in the C‐terminal domain was clearly different among the three β subunits (βE, βTP, and βDP). Despite fairly similar conformations of the βTP and βDP subunits, the βDP subunit exhibits smaller fluctuations in the C‐terminal domain than the βTP subunit due to their dissimilar interface configurations. Compared with the βTP subunit, the βDP subunit stably interacts with both the adjacent αDP and αE subunits. This sandwiched configuration in the βDP subunit leads to strongly correlated motions between the βDP and adjacent α subunits. The βDP subunit exhibits an extensive network of highly correlated motions with bound ATP and the γ subunit, as well as with the adjacent α subunits, suggesting that the structural changes occurring in the catalytically active βDP subunit can effectively induce movements of the γ subunit. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

8.
Integrin αIIbβ3 has emerged as an important therapeutic target for thrombotic vascular diseases owing to its pivotal role in mediating platelet aggregation through interaction with adhesive ligands. In the search for effective anti-thrombotic agents that can be administered orally without inducing the high-affinity ligand binding state, we recently discovered via high-throughput screening of 33,264 compounds a novel, αIIbβ3-selective inhibitor (RUC-1) of adenosine-5′-diphosphate (ADP) -induced platelet aggregation that exhibits a different chemical scaffold and mode of binding with respect to classical Arg-Gly-Asp (RGD)-mimicking αIIbβ3 antagonists. Most importantly, RUC-1 and its higher-affinity derivative, RUC-2, do not induce major conformational changes in the protein β3 subunit or prime the receptor to bind ligand. To identify additional αIIbβ3-selective chemotypes that inhibit platelet aggregation through similar mechanisms, we screened in silico over 2.5 million commercially available, ‘lead-like’ small molecules based on complementarity to the predicted binding mode of RUC-2 into the RUC-1-αIIbβ3 crystal structure. This first reported structure-based virtual screening application to the αIIbβ3 integrin led to the identification of 2 αIIbβ3-selective antagonists out of 4 tested, which compares favorably with the 0.003?% “hit rate” of our previous high-throughput chemical screening study. The newly identified compounds, like RUC-1 and RUC-2, showed specificity for αIIbβ3 compared to αVβ3 and did not prime the receptor to bind ligand. They thus may hold promise as αIIbβ3 antagonist therapeutic scaffolds.  相似文献   

9.
The interaction between salvianolic acid B (Sal B) and human hemoglobin (HHb) under physiological conditions was investigated by UV-vis absorption, fluorescence, synchronous fluorescence and circular dichroism spectroscopic techniques. The experimental results indicate that the quenching mechanism of fluorescence of HHb by Sal B is a static quenching procedure, the binding reaction is spontaneous, and the hydrophobic interactions play a major role in binding of Sal B to HHb. Based on F?rster's theory of non-radiative energy transfer, the binding distance between Sal B and the inner tryptophan residues of HHb was determined to be 2.64 nm. The synchronous fluorescence experiment revealed that Sal B can not lead to the microenvironmental changes around the Tyr and Trp residues of HHb, and the binding site of Sal B on HHb is located at α(1)β(2) interface of HHb. Furthermore, the CD spectroscopy indicated the secondary structure of HHb is not changed in the presence of Sal B.  相似文献   

10.
We propose a novel picture of the rotation mechanism of F(1)-ATPase, a rotary-motor protein complex. Entropy, which originates from the translational displacement of water molecules, is treated as the key factor in the proposal. We calculate the water entropy gains upon formation of the α-β, α-γ, and β-γ subunit pairs. The gain is given as the difference between the hydration entropy of a subunit pair and the sum of the hydration entropies of the separate subunits forming the pair. The calculation is made using a hybrid of a statistical-mechanical theory for molecular liquids and morphometric approach. The water entropy gain is considered as a measure of tightness of the packing at each subunit interface. The results are highly correlated with the numbers of stable contacts at the subunit interfaces estimated by a molecular dynamics simulation. We also calculate the hydration entropies of three different subcomplexes comprising the γ subunit, one of the β subunits, and two α subunits adjacent to them. The major finding is that the packing in F(1)-ATPase is highly asymmetrical, and this asymmetry is ascribed to the water entropy effect. We discuss how the rotation of the γ subunit is induced by such chemical processes as ATP binding, ATP hydrolysis, and release of the products. In our picture, the asymmetrical packing plays crucially important roles, and the rotation is driven by the water entropy effect.  相似文献   

11.
用液相等电聚焦电泳纯化藻蓝蛋白亚基   总被引:5,自引:0,他引:5  
以纯藻蓝蛋白(C-phycocyanin, C-PC)为材料, 采用Rotofor系统进行液相等电聚焦(Liquid-phase isoeletric focusing, LP-IEF)电泳纯化C-PC的α, β亚基, 探讨蛋白质亚基纯化的制备电泳(Preparative eletrophoresis)技术. 结果显示, 样品经2次等电聚焦电泳后, C-PC 的α, β亚基分别浓集在pH=4.9和pH=4.1附近, 平板超薄等电聚焦(Slab ultra thin IEF)和SDS-PAGE电泳鉴定表明分别为高纯度的C-PC α, β亚基. 提示LP-IEF是分离纯化等电点差异蛋白质活性亚基的简便有效的方法.  相似文献   

12.
Enol carbamates (O-vinylcarbamates) derived from aromatic or α,β-unsaturated compounds and bearing an N-aryl substituent undergo carbolithiation by nucleophilic attack at the (nominally nucleophilic) β position of the enol double bond. The resulting carbamate-stabilized allylic, propargylic, or benzylic organolithium rearranges with N→C migration of the N-aryl substituent, creating a quaternary carbon α to O. The products may be readily hydrolyzed to yield multiply branched tertiary alcohols in a one-pot tandem reaction, effectively a polarity-reversed nucleophilic β-alkylation-electrophilic α-arylation of an enol equivalent.  相似文献   

13.
Amino acid residue-specific backbone and side-chain dissociations of peptide z ions in MS(3) spectra were elucidated for over 40 pentapeptides with arginine C-terminated sequences of the AAXAR and AAHXR type, nonapeptides of the AAHAAXX"AR and AAHAXAX"AR type, and AAHAAXX"AAR decapeptides. Peptide z(n) ions containing amino acid residues with readily transferrable benzylic or tertiary β-hydrogen atoms (Phe, Tyr, His, Trp, Val) underwent facile backbone cleavages to form dominant z(n-2) or z(n-3) ions. These backbone cleavages are thought to be triggered by a side-chain β-hydrogen atom transfer to the z ion C(α) radical site followed by homolytic dissociation of the adjacent C(α)-CO bond, forming x(n-2) cation-radicals that spontaneously dissociate by loss of HNCO. Amino acid residues that do not have readily transferrable β-hydrogen atoms (Gly, Ala) do not undergo the z(n) → z(n-2) dissociations. The backbone cleavages compete with side-chain dissociations in z ions containing Asp and Asn residues. Side-chain dissociations are thought to be triggered by α-hydrogen atom transfers that activate the C(β)-C(γ) or C(β)-heteroatom bonds for dissociations that dominate the MS(3) spectra of z ions from peptides containing Leu, Cys, Lys, Met, Ser, Arg, Glu, and Gln residues. The Lys, Arg, Gln, and Glu residues also participate in γ-hydrogen atom transfers that trigger other side-chain dissociations.  相似文献   

14.
Non-covalent binding of planar aromatic molecules into the S1 specificity pocket of the serine protease α-chymotrypsin (αCHT) can be detected by measuring induced circular dichroism (CD) spectroscopic signals. Utilizing this phenomenon, αCHT association of proflavine (PRF), the well known serine protease inhibitor has been investigated together with plant-derived compounds including isoquinoline, pyridocarbazole and indoloquinoline alkaloids, of which αCHT binding has never been reported. Non-degenerate exciton coupling between π-π* transitions of the ligand molecules and two tryptophan residues (Trp172 and Trp215) near to the binding site is proposed to be responsible for the induced CD activity. The association constants calculated from CD titration data indicated strong αCHT association of sanguninarine, ellipticine, desmethyl-isocryptolepine and isoneocryptolepine (K(a) ≈ 10(5) M(-1)) while berberine, coptisine and chelerythrine bind to the enzyme with lower, PRF-like affinity (K(a) ≈ 10(4) M(-1)). PRF-trypsin and ellipticine-trypsin binding interactions have also been demonstrated. The binding of the alkaloids into the S1 pocket of αCHT has been confirmed by CD competition experiments. Molecular docking calculations showed the inclusion of PRF as well as the alkaloid molecules in the S1 cavity where they are stabilized by hydrophobic and H-bonding interactions. These novel nonpeptidic scaffolds can be used for developing selective inhibitors of serine proteases having chymotrypsin-like folds. Furthermore, the results provide a novel, CD spectroscopic based approach for probing the ligand binding of αCHT and related proteases.  相似文献   

15.
The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo-dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp) and tyrosine (Tyr) residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys) residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.  相似文献   

16.
Affinity chromatography is one of the most common techniques employed at the industrial-scale for antibody purification. In particular, the purification of human immunoglobulin G (hIgG) has gained relevance with the immobilization of its natural binding counterpart—Staphylococcus aureus Protein A (SpA) or with the recent development of biomimetic affinity ligands, namely triazine-based ligands. These ligands have been developed in order to overcome economic and leaching issues associated to SpA. The most recent triazine-based ligand—TPN-BM, came up as an analogue of 2-(3-amino-phenol)-6-(4-amino-1-naphthol)-4-chloro-sym-triazine ligand also known as ligand 22/8 with improved physico-chemical properties and a greener synthetic route. This work intends to evaluate the potential of TPN-BM as an alternative affinity ligand towards antibody recognition and binding, namely IgG, at an atomic level, since it has already been tested, after immobilization onto chitosan-based monoliths and demonstrated interesting affinity behaviour for this purpose. Herein, combining automated molecular docking and molecular dynamics simulations it was predicted that TPN-BM has high propensity to bind IgG through the same binding site found in the crystallographic structure of SpA_IgG complex, as well as theoretically predicted for ligand 22/8_IgG complex. Furthermore, it was found that TPN-BM established preferential interactions with aromatic residues at the Fab domain (Trp 50, Tyr 53, Tyr 98 and Trp 100), while in the Fc domain the main interactions are based on hydrogen bonds with pH sensitive residues at operational regime for binding and elution like histidines (His 460, His 464, His 466). Moreover, the pH dependence of TPN-BM_IgG complex formation was more evident for the Fc domain, where at pH 3 the protonation state and consequently the charge alteration of histidine residues located at the IgG binding site induced ligand detachment which explains the optimal elution condition at this pH observed experimentally.  相似文献   

17.
N,N-dimethyl formamide (DMF) is an extensively used organic solvent but is also a potent pollutant. Certain bacterial species from genera such as Paracoccus, Pseudomonas, and Alcaligenes have evolved to use DMF as a sole carbon and nitrogen source for growth via degradation by a dimethylformamidase (DMFase). We show that DMFase from Paracoccus sp. strain DMF is a halophilic and thermostable enzyme comprising a multimeric complex of the α2β2 or (α2β2)2 type. One of the three domains of the large subunit and the small subunit are hitherto undescribed protein folds of unknown evolutionary origin. The active site consists of a mononuclear iron coordinated by two Tyr side-chain phenolates and one carboxylate from Glu. The Fe3+ ion in the active site catalyzes the hydrolytic cleavage of the amide bond in DMF. Kinetic characterization reveals that the enzyme shows cooperativity between subunits, and mutagenesis and structural data provide clues to the catalytic mechanism.  相似文献   

18.
This article describes the interaction of fluoxymesterone (Flu) with HSA and HTF in the absence and presence of cyclodextrins (CDs) (α, β and γ). According to fluorescence data, the binding of Flu to the proteins caused strong static quenching in the binary and ternary systems. The fluorescence quenching results demonstrated that HSA and HTF had two and one class of apparent binding sites with a distinct binding constant in the presence of the CDs, respectively. The effects of Flu on the structure of HSA and HTF were analyzed using synchronous fluorescence spectroscopy, which showed that the interaction of Flu with both proteins in the binary and ternary systems altered the microenvironment around the Trp and Tyr residues. The distance, r, between Flu and the proteins was obtained according to FRET which pointed at a successful formation of a drug-protein complex. Far-UV CD spectra indicated that the binding of the drug to both proteins induced changes in the secondary structure of HSA and HTF in the binary and ternary systems. Finally, molecular modeling provided possible binding sites of Flu within the proteins for the binary and ternary systems and also confirmed the experimental results. The obtained data can be useful for determining usage drug doses in drug delivery.  相似文献   

19.
The direct oxygen sensor protein from Escherichia coli (Ec DOS) is a heme-based signal transducer protein responsible for phosphodiesterase (PDE) activity. Binding of either O2 or CO molecule to a reduced heme enhances the PDE activity toward 3',5'-cyclic diguanylic acid. We report ultraviolet resonance Raman (UVRR) spectroscopic investigations of the reduced, O2- and CO-bound forms of heme-bound PAS domain of Ec DOS. The UVRR results show that heme discriminates different ligands, resulting in altered conformations in the protein moiety. Specifically, the environment around Trp53 that contacts the 2-vinyl group of heme, is changed to a more hydrophobic environment by O2 binding, whereas it is changed to a more hydrophilic environment by CO-binding. In addition, the PDE activity of the O2- and CO-bound forms for the Trp53Phe mutant is significantly decreased compared with that of the wild type (WT), demonstrating the importance of Trp53 for the catalytic reaction. On the other hand, the binding of O2 or CO to the heme produces drastic changes in the Tyr126 of Ibeta-strand at the surface of the sensor domain. Furthermore, we found that Asn84 forms a hydrogen bond with Tyr126 either in the O2- or CO-bound forms but not in the reduced form. Finally, the PDE activities of the ligand-bound forms for Asn84Val and Tyr126Phe mutants are significantly reduced as compared with that of WT, suggesting the importance of the hydrogen-bonding network from heme 6-propionate to Tyr126 through Asn84 in signal transmission.  相似文献   

20.
Artificial mimicry of α-helices offers a basis for development of protein-protein interaction antagonists. Here we report a new type of unnatural peptidic backbone, containing α-, β-, and γ-amino acid residues in an αγααβα repeat pattern, for this purpose. This unnatural hexad has the same number of backbone atoms as a heptad of α residues. Two-dimensional NMR data clearly establish the formation of an α-helix-like conformation in aqueous solution. The helix formed by our 12-mer α/β/γ-peptide is considerably more stable than the α-helix formed by an analogous 14-mer α-peptide, presumably because of the preorganized β and γ residues employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号