首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infrared spectra (3200 to 30 cm–1) of gaseous and solid chloroacetyl bromide, CH2ClC(O)Br, and the Raman spectra (3200 to 10 cm–1) of the gas, liquid (with depolarization data), and solid have been recorded. From the observed asymmetric torsional transitions, the potential function governing internal rotation of the CH2Cl moiety has been determined with the following coefficients:V 1=336±11,V 2=73±10,V 3=757+7,V 4=103±3, andV 6=5±2 cm–1. This potential function is consistent with s-trans to gauche and gauche to gauche barriers of 963±11 and 709±12cm–1, respectively, and enthalpy difference of 373 ± 24 cm–1 with the dihedral angle of the gauche rotamer being 115°. The enthalpy difference has been determined experimentally from the studies of the Raman spectra at different temperatures to be 359±68 cm–1 (1.03±0.19 kcal mol–1) and 507±24 cm–1 (1.45±0.07 kcal mol–1) for the gas and liquid, respectively, with the s-trans conformer being the more stable conformer in the gas and liquid and the only one present in the annealed solid. A complete assignment of the vibrational fundamentals is proposed from spectral data obtained for the gas, liquid, and solid. The assignment is supported by a normal coordinate calculation utilizing a modified valence force field to obtain the frequencies for the normal vibrations and the potential energy distribution. The results are discussed and compared to the corresponding quantities for some similar molecules.Taken in part from the thesis of H. V. Phan, which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree.  相似文献   

2.
The far infrared spectrum (375 to 30 cm–1) of gaseous 2-chloro-3-fluoropropene, CH2=C(CH2F)CI, has been recorded at a resolution of 0.10 cm–1. The fundamental asymmetric torsional mode is observed at 117.5 cm–1 with ten excited states falling to low frequency for thes-cis (fluorine atom eclipsing the double bond) conformer. For the higher energy gauche conformer, the asymmetric torsion is estimated to be at 94 cm–1. From these data the asymmetric torsional potential function has been calculated. The potential function coefficients are calculated to be in cm–1):V 1=803±21,V 2=–94±21,V 3= 1025±10,V 4=95±10, andV 6=2±1, with an enthalpy difference between the more stables-cis and gauche conformera of 550±100 cm–1 (1.57±0.29 kcal/mol). This function gives values of 1227±50cm–1(3.51±0.14kcal/mol), 1266±200 cm–1 (3.62±0.57 kcal/mol), and 665±100 cm–1 (1.90±0.29 kcal/mol), for thes-cis to gauche, gauche to gauche, and gauche tos-cis barriers, respectively. From the relative intensities of the Raman lines of the gas at 652 cm–1 (gauche) and 731 cm–1 (s-cis) as a function temperature, the enthalpy difference is found to be 565±96 cm–1 (1.62±0.27 kcal/mol). However, the more polar gauche conformer remains in the crystalline solid. The Raman spectrum of the gas has been recorded from 3500 to 70 cm–1 and, utilizing these data and the previously reported infrared data, a complete vibrational analysis is proposed for both conformers. The conformational stability, barriers to internal rotation, fundamental vibrational frequencies, and structural parameters that have been determined experimentally are compared to those obtained from ab initio Hartree-Fock gradient calculations employing both the 3–21 G* and 6–31G* basis sets and to the corresponding quantities for some similar molecules.  相似文献   

3.
s-trans, s-cis and gauche conformers of 1,3-butadiene have been studied using density functional theory and the coupled-cluster method using double substitutions (CCD). Matrix isolation Raman and IR data for the minor conformer were obtained and are used in combination with the theoretical results to resolve earlier ambiguities in vibrational assignments. Based on high-quality Hessians, new harmonic stretching force constants are reported for the carbon backbone of s-trans-1,3-butadiene. For the minor conformer the best unscaled root mean square error of the calculated frequencies for the s-cis and gauche geometries are 17.5 cm−1 and 7.4 cm−1, respectively, primarily due to a better agreement of the gauche results for the vibrations at 983 cm−1, 596 cm−1 and 470 cm−1 which depend strongly on the torsional angle. Although this points towards the gauche form rather than the s-cis form, the calculated transition dipole moment directions at the CCD/6-311G(d,p) level confirm the earlier conclusion that the minor conformer has C 2 v symmetry in the matrix. It is concluded that either the better agreement between the frequencies calculated for the gauche form and the observed values is coincidental, or that the molecule is indeed nonplanar in the matrix and tunnels very rapidly between the two mirror-image forms (or its lowest vibrational level lies above the barrier). Received: 1 July 1998 / Accepted: 26 October 1998 / Published online: 15 February 1999  相似文献   

4.
The far-infrared spectra (350–35 cm–1) of gaseous ethyl methyl ether-d 0 and ethyl methyl-d 3-ether have been recorded at a resolution of 0.10 cm–1. For the d 0 species, the fundamental asymmetric torsion of the more stable trans conformer (two methyl moieties are trans to one another) has been observed at 115.40 cm–1 with four upper state transitions falling to lower frequency, whereas, for the gauche form, it has been observed at 93.56 cm–1 with two excited states falling to lower frequency. the corresponding series for the d 3 species start from 106.00 and 87.10 cm–1, respectively. From these data, the asymmetric torsional potential coefficients for the d 0 species have been determined to be: V 1 = 572 ± 30; V 2 = 85 ± 8; V 3 = 619 ± 30; V 4 = 175 ± 18, and V 6 = –28 ± 3 cm–1. The trans to gauche and gauche to gauche barriers were calculated to be 958 cm–1 (11.5 kJ/mol) and 631 cm–1 (7.55 kJ/mol), respectively, with an energy difference of 550 ± 6 cm–1 (6.58 ± 0.07 kJ/mol). Utilizing three conformer pairs, variable temperature studies (–105 to –150°C) of the infrared spectra of the d 0 sample dissolved in liquid krypton gave an enthalpy difference of 547 ± 28 cm–1 (6.54 ± 0.33 kJ/mol) with the trans conformer the more stable rotamer. It is estimated that there is only 4% of the gauche conformer present at ambient temperatures. The structural parameters, conformational stabilities, barriers to internal rotation, and fundamental vibrational frequencies, which have been determined experimentally, are compared to those obtained from ab initio gradient predictions from RHF/6-31G* and with full electron correlation at the MP2 level with three different basis sets. The adjusted r 0 structural parameters have been obtained for the trans conformer from combined ab initio MP2/6-311+G** predictions and previously reported microwave rotational constants. The reported distances should be accurate to 0.003 Å and the angles to 0.5°. These results are compared to the corresponding quantities obtained for some similar molecules.  相似文献   

5.
The infrared (3200–30 cm–1) spectra of gaseous and solid Cyclopropyldifluorosilane, c-C3H5SiF2H, and the Raman spectra (3200–20 cm–1) of the liquid with quantitative depolarization values and the solid have been recorded. Both the syn (cis) and skew (gauche) conformers have been identified in the fluid phases, but only the syn conformer remains in the solid. Variable temperature (–55 to –100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 73 ± 10 cm–1 (209 ± 29 cal mol–1), with the syn conformer being the more stable rotamer, which is at variance with the predictions from ab initio calculations. A complete vibrational assignment is proposed for both conformers based on infared band contours, relative intensities, depolarization values, and group frequencies. The vibrational assignments are supported by normal coordinate calculations utilizing the force constants from ab initio MP2/6-31G* calculations. Utilizing the frequencies of the silicon–hydrogen sketch, the rm Si—H bond distances of 1.474 and 1.472 Å have been obtained for the syn and skew conformers, respectively. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311 +G** basis sets at levels of restricted Hartree-Fock (RHF) and/or Moller–Plesset (MP) to second order. The potential energy terms for the conformer interconversion have been obtained from the MP2/6-31G* calculation. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

6.
The Raman spectra (3500 to 30 cm–1) of allyltrifluorosilane, CH2CHCH2SiF3, in the liquid with quantitative depolarization ratios and solid states, and the infrared spectra (3500 to 30 cm–1) of the gas and solid have been recorded. Additionally, the mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (–100° to –55°C) have been recorded. All of these data indicate there are two conformers, the more stable gauche rotamer and a very small amount of the cis conformer in the fluid states, but only the gauche form remains in the polycrystalline solid. The variable temperature studies of the infrared spectrum of the xenon solution indicate a relatively large enthalpy difference of 354±30 cm–1 (4.23±0.36 kJ/mol) between the conformers. The fundamental frequencies for the asymmetric (54 cm–1) and SiF3 (48 cm–1) torsions for the gauche conformer were observed in the far infrared spectrum, and from the SiF3 torsional frequency the barrier to internal rotation is calculated to have a value of 525 cm–1 (6.28 kJ/mol). A complete vibrational assignment is presented for the gauche conformer that is consistent with the predicted wavenumbers utilizing the force constants from ab initio MP2/6-31G* calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational wavenumbers have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with corresponding results for some similar molecules.Taken in part from the dissertation of Y. E. Nashed, which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree  相似文献   

7.
The infrared spectra (3500–400 cm–1) of krypton solutions of chlorocyclopentane, c-C5H9Cl, at variable temperatures (–101 to –150°C) have been recorded and the fundamental vibrations of the axial conformer and several of those for the equatorial form have been assigned. Utilizing two pairs of fundamentals for the two conformers in the krypton solution, an enthalpy difference of 145±15 cm–1 (1.73±0.18 kJ-mol–1) has been obtained with the axial conformer the more stable form. It is estimated that there is 67±2% of the axial conformer present at ambient temperature. Convincing spectroscopic evidence shows that a significant percentage of the chlorocyclopentane molecules are undergoing pseudorotation at ambient temperature. The conformational stabilities, harmonic force constants, fundamental frequencies, infrared intensities, and Raman activities have been obtained from MP2/6-31G(d) calculations with full electron correlation and these quantities have been compared to the experimental values when appropriate. The optimized geometries and conformational stabilities have also been obtained from ab initio MP2 calculations as well as by density functional theory (DFT) by the B3LYP method with several different basis sets. The adjusted r 0 structural parameters have been obtained for both conformers by combining the ab initio data with the previously reported microwave rotational constants. These new values of the structural parameters for both conformers are compared to those previously reported from electron diffraction and microwave studies. These results are compared to the corresponding quantities of some similar molecules.  相似文献   

8.
The Raman (3200 to 10 cm–1) and far infrared (380 to 60 cm–1) spectra of gaseous fluorocyclobutane,c-C4H7F, have been recorded. A series of Q-branches observed in both of these spectra beginning at 166 cm–1 with successive transitions falling to lower frequencies have been assigned to the ring puckering vibrations of both the low energy equatorial and high energy axial conformers. These data have been fit to an asymmetric potential function of the form:V (cm–1)=(1.76±0.05)103X+(4.88±0.28)104X2+(2.12 ±0.16)103 exp(–5.66±0.41)10X2 with a reduced mass function ofg 44= 0.00386–0.00295X+0.03485X2+0.1228X3 +0.3459X4, whereX is the ring puckering coordinate. Utilizing this potential, the difference between the puckering angles for the two conformers was calculated to be 4° with the equatorial conformer having the larger value of 28°. This potential function is consistent with an energy difference between the equatorial and axial forms of 447 cm–1 (1.28 kcal/mol) and a barrier to ring inversion from the equatorial to the axial conformation of 713 cm–1 (2.04 kcal/mol). Experimental values for the enthalpy difference between the two conformers have been determined for both the liquid (400±30 c–1) and gas (413±43 cm–1) from investigations of the Raman spectra at variable temperatures. The conformational stability, enthalpy difference, structural parameters, and fundamental vibrational frequencies, which have been determined experimentally, are compared to those obtained from ab initio Hartree-Fock calculations employing the 3-21G, 6-31 G*, and 6-31 G** basis sets.For part LVIII, seeStruct. Chem. 1991,2, 195.Taken in part from the thesis of M. J. Lee, which has been submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree, May 1991.  相似文献   

9.
Durig  James R.  Shen  Shiyu 《Structural chemistry》2003,14(2):199-210
Variable temperature (–100 to –150°C) studies of the infrared spectra (3500–400 cm–1) of propenoyl bromide, CH2=CHCBrO, dissolved in liquid krypton, have been carried out. Utilizing six different conformer pairs, an enthalpy difference of 204 ± 20 cm–1 (2.44 ± 0.24 kJ/mol) was obtained, with the anti conformer (carbonyl bond trans to C=C bond) the more stable form. At ambient temperature, there is approximately 28 ± 2% of the syn conformer present. The anti conformer also remains in the infrared and Raman spectra of the polycrystalline solid. The optimal geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, depolarization ratios, and vibrational frequencies, are reported for both conformers from MP2/6-31G(d) ab initio calculations. The potential function governing the conformational interchange has been obtained from the MP2/6-31G(d) ab initio calculations. The conformational stabilities were calculated from a variety of basis sets and at the highest level of calculations, MP2/6-311 + (2df,2pd), the anti conformer is predicted to be more stable by 178 cm–1, which is in excellent agreement with the experimental results. The r 0 adjusted structural parameters have been obtained for propenoyl fluoride and chloride from a combination of the previously reported microwave rotational constants and ab initio predicted parameters. Several of the parameters for the chloride are significantly different than those proposed from an electron diffraction investigation. The results of these spectroscopic, structural, and theoretical studies are discussed and compared to the corresponding results for some similar molecules.  相似文献   

10.
The Raman (3500–40 cm–1) and infrared (3500–70 cm–1) spectra of gaseous and solid 2-methoxypropene, CH3O(CH3)C=CH2, and the isotopomers, CD3O(CH3)C=CH2 and CH3O(CD3)C=CD2 have been recorded. In addition, the Raman spectra of the liquids have been recorded with qualitative depolarization measurements. All of these data indicate that only one conformer is present in the fluid phases at ambient temperature and this form is the cis conformer, which remains in the solid. Assignments are provided for the fundamentals of all three isotopomers for the cis conformer with Cs symmetry. The far-infrared spectra of all three isotopic species have been recorded at a resolution of 0.1 cm–1 in the gas and 1.0 cm–1 in the solid. The parameters of the potential function governing the asymmetric torsion are determined to be V3 = 1485 ± 9 cm–1 and V6 = –55 ± 4 cm–1 for the d0 compound, where only two terms were determined, since a second conformer was not evident. The barrier to internal rotation for the methyl group attached to the oxygen atom is 1370 ± 8 cm–1 and the C—CH3 barrier is 772 ± 5 cm–1. Ab initio calculations with full electron correlation have been carried out by the perturbation method to second order to obtain the equilibrium structural parameters, harmonic force constants, fundamental frequencies, infrared intensities, Raman activities, depolarization values, and conformational stability. The predicted values have been compared to the experimental values where appropriate.  相似文献   

11.
The infrared spectra (4000–400 cm– 1) of solid and the Raman spectra (3500–30 cm– 1) of liquid and solid 1-nitropropane, CH3CH2CH2NO2, have been registered. Both the trans and gauche conformers have been identified in the fluid phase, while the trans form remains in the stable solid. Temperature dependence (190–230K) of the liquid 1-nitropropane Raman spectra has been carried out. From these data, the enthalpy difference was determined to be 870 ± 105 J-mol–1, with the gauche conformer being the more stable rotamer. Ab initio and DFT calculations at different levels of approximation (HF, MP2, B3LYP, B3PW91) gave optimized geometries, harmonic force fields, and vibrational frequencies for the trans and gauche conformers. All the calculations (except the B3PW91/6-31G* level) predicted gauche as the low-energy conformer. Theoretical force constants are analyzed for formulating constraints in the molecular force field model of 1-nitropropane.  相似文献   

12.
Variable-temperature (–55 to –155°C) studies of the infrared spectra (3500–400 cm–1) of methyl vinyl silane, CH2CHSiH2CH3, dissolved in liquid xenon and krypton have been recorded. Utilizing three sets of conformer doublets due to the cis and gauche rotamers, the enthalpy difference has been determined to be 133 ± 11 cm–1 (1.59 ± 0.13 kJ/mol) with the gauche conformer the more stable form in the krypton solution. In the xenon solution, the enthalpy difference could not be determined because the infrared bands become so broad and the overlap was so extensive that meaningful areas could not be determined. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G(2d,2p) from which structural parameters and conformational stabilities have been determined. With the largest basis set, the cis conformer is predicted to be the more stable conformer, which is inconsistent with the experimental results. Utilizing previously reported microwave rotational constants for both conformers along with the ab initio predicted distances and angles, r 0 parameters have been obtained for both the cis and gauche conformers. The spectroscopic and theoretical results are compared to the corresponding quantities for some similar molecules.  相似文献   

13.
The infrared (3200 to 400 cm–1) spectra of gaseous and solid and Raman (3200 to 20 cm–1) spectra of liquid and solid ethyl chlorosilane-Si-d2, CH3CH2SiD2Cl, have been recorded. Both the gauche and trans conformers have been identified in the fluid phases, but only the gauche conformer remains in the solid phase. Variable temperature (–105 to –150°C) studies of the infrared spectra of CH3CH2SiH2Cl dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 78±11 cm–1 (0.93±0.13 kJ/mol), with the gauche conformer the more stable form. Utilizing the frequencies of the silicon-hydrogen stretches, from the chlorosilane-Si-d isotopomer, Si—H bond distances of 1.481 and 1.480 Å have been obtained for the gauche conformer and 1.481 Å for the trans conformer. Complete vibrational assignments are proposed for both isotopomers which are consistent with the predicted frequencies utilizing the force constants from ab initio MP2/6-31G(d) calculations. Both the infrared intensities and the Raman activities and depolarization values have been obtained from the ab initio calculations. Complete equilibrium geometries have been determined by ab initio calculations employing the 6-31(d), 6-311++G(d,p), and 6-311+G(2d,2p) basis sets with full electron correlation by the Moller–Plesset (MP) perturbation method to second order. Continuing the previously reported rotational constants from five different isotopomers and the ab initio predicted structural parameters, adjusted r 0 parameters have been calculated, which are compared to the corresponding r s parameters. The results are discussed and the theoretical values are compared to the experimental values when appropriate.Taken in part from the dissertation of Y. E. Nashed, which will be submitted to the Department of Chemistry in partial fulfillment of the Ph.D. degree  相似文献   

14.
The far-infrared spectrum of gaseous fluoromethyl methyl ether, FCH2OCH3, along with three of the deuterium isotopes, has been recorded at a resolution of 0.10 cm–1 in the 350 to 50 cm–1 region. The fundamental asymmetric torsional and methyl torsional modes are extensively mixed and have been observed at 182 and 132 cm–1, respectively, for the stablegauche conformer with the lower frequency band having several excited states falling to lower frequency. An estimate is given for the potential function governing the asymmetric rotation. On the basis of a one-dimensional model the barrier to internal rotation of the methyl moiety is determined to be 527±9 cm–1 (1.51±0.03 kcal/mol). A complete assignment of the vibrational fundamentals for all four isotopic species observed from the infrared (3500 to 50 cm–1) spectra of the gas and solid and from the Raman (3200 to 10 cm–1) spectra of the gas, liquid, and solid is proposed. No evidence could be found in any of the spectra for the high-energytrans conformer. All of these data are compared to the corresponding quantities obtained from ab initio Hartree-Fock gradient calculations employing the 3-21G and 6-31G* basis sets along with the 6-31G* basis set with electron correlation at the MP2 level. Additionally, completer 0 geometries have been determined from the previously reported microwave data and carbon-hydrogen distances determined from infrared studies. The heavy-atom structural parameters (distances in Å, angles in degrees) arer(C1-F) = 1.395 ± 0.005;r(C1-O) = 1.368 ± 0.007;r(C2-O) = 1.426 ±0.003; FC1O = 111.33 ± 0.25; C1OC2 = 113.50 ± 0.18 and dih FC1OC2 = 69.12 ± 0.26. All of these results are discussed and compared with the corresponding quantities obtained for some similar molecules.  相似文献   

15.
Variable temperature (–55 to –150°C) studies of the infrared spectra (3500 to 400 cm–1) of 1-fluoropropane, CH3CH2CH2F, dissolved in liquid krypton and xenon have been recorded. Utilizing three conformer pairs in the krypton solution and four conformer pairs in the xenon solution, enthalpy differences of 104±6 cm–1 (1.24±0.07 kJ/mol) and 99±5 cm–1 (1.16±0.06 kJ/mol) were obtained from the krypton and xenon solutions, respectively, with the gauche form the more stable conformer. From these data it is estimated that 24% of the trans forms is present at ambient temperature. The conformational stabilities, harmonic force constants, fundamental frequencies, infrared intensities and Raman activities have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations and these quantities have been compared to the experimental values when appropriate. The optimized geometries have also been obtained with several different ab initio basis sets up to MP2/6-311+G(2d,2p). The r0 structural parameters have been obtained by combining the ab initio data with the previously reported rotational constants for both conformers. The results are compared to the corresponding results for some similar molecules.  相似文献   

16.
The infrared (3500–40 cm−1) spectra of gaseous and solid 1-fluoro-1-methylsilacyclobutane, c-C3H6SiF(CH3), have been recorded. Additionally, the Raman spectrum (3500–30 cm−1) of the liquid has been recorded and quantitative depolarization values have been obtained. Both the axial and equatorial (with respect to the methyl group) conformers have been identified in the fluid phases. Variable temperature (−55–−100°C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. From these data, the enthalpy difference has been determined to be 267±10 cm−1 (3.19±0.12 kJ mol−1), with the axial conformer being the more stable form and the only conformer remaining in the polycrystalline solid. A complete vibrational assignment is proposed for the axial conformer and many of the fundamentals for the equatorial conformer have also been identified. The vibrational assignments are supported by normal coordinate calculations utilizing ab initio force constants. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing the 6-31G* and 6-311++G** basis sets at the levels of restricted Hartree–Fock (RHF) and/or Moller–Plesset (MP) to second order. The results are discussed and compared to those obtained for some similar molecules.  相似文献   

17.
The far-IR spectrum from 375 to 30 cm−1 of gaseous 3-chloro-2-methylpropene, CH2=C(CH3)CH2Cl, has been recorded at a resolution of 0.10 cm−1. The fundamental asymmetric torsional mode for the gauche conformer is observed at 84.3 cm−1 with three excited states falling to lower frequency. For the higher energy s-cis conformer, where the chlorine atom eclipses the double bond, the asymmetric torsion is observed at 81.3 cm−1 with two excited states falling to lower frequency. Utilizing the s-cis and gauche torsional frequencies, the gauche dihedral angle and the enthalpy difference between conformers, the potential function governing the interconversion of the rotamers has been calculated. The determined potential function coefficients are (in reciprocal centimeters): V1=189±12, V2=−358±11, V3=886±2 and V4=−12±2 with an enthalpy difference between the more stable gauche and s-cis conformers of 150 ±25 cm−1 (430 ± 71 cal mol−1). This function gives values of 661 cm−1 (1.89 kcal mol−1), 1226 cm−1 (3.51 kcal mol−1) and 812 cm−1 (2.32 kcal mol−1), for the s-cis to gauche, gauche to gauche, and gauche to s-cis barriers, respectively. From the methyl torsional frequency of 170 cm−1 for the gauche conformer, the threefold barrier of 678 cm−1 (1.94 kcal mol−1) has been calculated. The asymmetric potential function, conformational energy difference and optimized geometries of both conformers have also been obtained from ab initio calculations with both the 3–21G* and 6–31G* basis sets. A normal-coordinate analysis has also been performed with a force field determined from the 3–21G* basis set. These data are compared with the corresponding data for some similar molecules.  相似文献   

18.
Durig  J. R.  Shen  Shiyu  Drew  B. R.  Zhao  W. 《Structural chemistry》2000,11(4):213-228
Variable temperature (–60 to –100°C) studies of the infrared spectra (3500–400 cm–1) of cyclopropylmethyl ketone, c-C3H5C(CH3)O, dissolved in liquid xenon have been recorded. Utilizing several doublets due to the cis and near-trans conformers, the enthalpy difference has been determined to be 269 ± 26 cm–1 (3.22 ± 0.31 kJ/mol) with the cis conformer (oxygen atom cis to the three-membered ring) the more stable rotamer. From these data it is estimated that 79 ± 3% of the cis form is present at ambient temperature. Ab initio calculations have been carried out with different basis sets up to 6-311+G(2df,2pd) at the restricted Hartree–Fock and/or with full electron correlation by the perturbation method to second order (MP2) from which structural parameters and conformation stabilities have been determined. These calculations support the experimental conformational conclusions that the cis form is the more stable conformer. A complete vibrational assignment is given for the cis conformer, which is supported from a normal coordinate calculation utilizing ab initio force constants. Several of the fundamentals of the near-trans conformer have been identified and assigned. Adjusted r 0 structural parameters have been obtained from combined ab initio predicted values and previously reported rotational constants from the microwave investigation. The spectroscopic and theoretical results are compared to the corresponding quantities for some similar molecules.  相似文献   

19.
Calculations have been carried out of the total Mulliken charges on carbon and nitrogen atoms, the relative stability, and equilibrium populations of the s-cis(R) and s-trans(R) conformers of a series of 1-vinyl-5R-tetrazoles (R = H, Me, n-Bu, tert-Bu, Ph, NH2, I, CF3, NO2) by the ab initio MP2/6-31G** method. Out-of-plane structures correspond to the stable s-cis(R) conformer, and the deviation from planarity grows regularly with an increase in the bulk of the substituent. The proportion of s-trans(R) conformation increases in the same series and reaches 100% for R = tert-C4H9. The data of quantum-chemical calculations are in agreement with the results of investigations of the spatial structure of 1-vinyl-5R-tetrazoles by 1H and 13C NMR methods. Values of the total energies of the corresponding homodesmotic reactions were calculated to assess the effect of the nature of the substituent in position 5 of the tetrazole ring on the size of the conjugation energy in planar s-trans(R) conformations of the compounds investigated. The quantum-chemical calculations carried out show that the conjugation energy decreases regularly according to the increase in electron-withdrawing properties of the substituent in position 5 of the ring.__________Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 537–548, April, 2005.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号