首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen deuterium exchange mass spectrometry (HDX‐MS) is a powerful technique for studying protein dynamics, which is an important factor governing protein functions. However, the process of hydrogen/deuterium exchange (HDX) of proteins is highly complex and the underlying mechanism has not yet been fully elucidated. Meanwhile, molecular dynamics (MD) simulation is a computational technique that can be used to elucidate HDX behaviour on proteins and facilitate interpretation of HDX‐MS data. This article aims to summarize the current understandings on the mechanism of HDX and its correlation with MD simulation, to discuss the recent developments in the techniques of HDX‐MS and MD simulation and to extend the perspectives of these two techniques in protein dynamics study.  相似文献   

2.
Mass spectrometry (MS) plays a central role in studies on protein structure and dynamics. This review highlights some of the recent developments in this area, with focus on applications involving the use of electrospray ionization (ESI) MS. Although this technique involves the transformation of analytes into highly nonphysiological species (desolvated gas-phase ions in the vacuum), ESI-MS can provide detailed insights into the solution-phase behavior of proteins. Notably, the ionization process itself occurs in a structurally sensitive manner. An increased degree of solution-phase unfolding is correlated with a higher level of protonation. Also, ESI allows the transfer of intact noncovalent complexes into the gas phase, thereby yielding information on binding partners, stoichiometries, and even affinities. A particular focus of this article is the use of hydrogen/deuterium exchange (HDX) methods and hydroxyl radical (.OH) labeling for monitoring dynamic and structural aspect of solution-phase proteins. Conceptual similarities and differences between the two methods are discussed. We describe a simple method for the computational simulation of protein HDX patterns, a tool that can be helpful for the interpretation of isotope exchange data recorded under mixed EX1/EX2 conditions. Important aspects of .OH labeling include a striking dependence on protein concentration, and the tendency of commonly used solvent additives to act as highly effective radical scavengers. If not properly controlled, both of these factors may lead to experimental artifacts.  相似文献   

3.
Kinetic folding experiments by pulsed hydrogen/deuterium exchange (HDX) mass spectrometry (MS) are a well‐established tool for water‐soluble proteins. To the best of our knowledge, the current study is the first that applies this approach to an integral membrane protein. The native state of bacteriorhodopsin (BR) comprises seven transmembrane helices and a covalently bound retinal cofactor. BR exposure to sodium dodecyl sulfate (SDS) induces partial unfolding and retinal loss. We employ a custom‐built three‐stage mixing device for pulsed‐HDX/MS investigations of BR refolding. The reaction is triggered by mixing SDS‐denatured protein with bicelles. After a variable folding time (10 ms to 24 h), the protein is exposed to excess D2O buffer under rapid exchange conditions. The HDX pulse is terminated by acid quenching after 24 ms. Subsequent off‐line analysis is performed by size exclusion chromatography and electrospray MS. These measurements yield the number of protected backbone N–H sites as a function of folding time, reflecting the recovery of secondary structure. Our results indicate that much of the BR secondary structure is formed quite late during the reaction, on a time scale of 10 s and beyond. It is hoped that in the future it will be possible to extend the pulsed‐HDX/MS approach employed here to membrane proteins other than BR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The initial stages of drug discovery are increasingly reliant on development and improvement of analytical methods to investigate protein-protein and protein-ligand interactions. For over 20 years, mass spectrometry (MS) has been recognized as providing a fast, sensitive and high-throughput methodology for analysis of weak non-covalent complexes. Careful control of electrospray ionization conditions has enabled investigation of the structure, stability and interactions of proteins and peptides in a solvent free environment. This critical review covers the use of mass spectrometry for kinetic, dynamic and structural studies of proteins and protein complexes. We discuss how conjunction of mass spectrometry with related techniques and methodologies such as ion mobility, hydrogen-deuterium exchange (HDX), protein footprinting or chemical cross-linking can provide us with structural information useful for drug development. Along with other biophysical techniques, such as NMR or X-ray crystallography, mass spectrometry provides a powerful toolbox for investigation of biological problems of medical relevance (204 references).  相似文献   

5.
PEGylation is the covalent attachment of polyethylene glycol to proteins, and it can be used to alter immunogenicity, circulating half life and other properties of therapeutic proteins. To determine the impact of PEGylation on protein conformation, we applied hydrogen/deuterium exchange mass spectrometry (HDX MS) to analyze granulocyte colony stimulating factor (G-CSF) upon PEGylation as a model system. The combined use of HDX automation technology and data analysis software allowed reproducible and robust measurements of the deuterium incorporation levels for peptic peptides of both PEGylated and non-PEGylated G-CSF. The results indicated that significant differences in deuterium incorporation were induced by PEGylation of G-CSF, although the overall changes observed were quite small. PEGylation did not result in gross conformational rearrangement of G-CSF. The data complexity often encountered in HDX MS measurements was greatly reduced through a data processing and presentation format designed to facilitate the comparison process. This study demonstrates the practical utility of HDX MS for comparability studies, process monitoring, and protein therapeutic characterization in the biopharmaceutical industry.  相似文献   

6.
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a well established method for the measurement of solution-phase deuterium incorporation into proteins, which can provide insight into protein conformational mobility. However, most HDX measurements are constrained to regions of the protein where pepsin proteolysis allows detection at peptide resolution. Recently, single-amide resolution deuterium incorporation has been achieved by limiting gas-phase scrambling in the mass spectrometer. This was accomplished by employing a combination of soft ionization and desolvation conditions coupled with the radical-driven fragmentation technique electron transfer dissociation (ETD). Here, a hybrid LTQ-Orbitrap XL is systematically evaluated for its utility in providing single-amide deuterium incorporation for differential HDX analysis of a nuclear receptor upon binding small molecule ligands. We are able to show that instrumental parameters can be optimized to minimize scrambling and can be incorporated into an established and fully automated HDX platform making differential single-amide HDX possible for bottom-up analysis of complex systems. We have applied this system to determine differential single amide resolution HDX data for the peroxizome proliferator activated receptor bound with two ligands of interest.  相似文献   

7.
Hydrogen/deuterium exchange (HDX) coupled to protein fragmentation either in solution (by means of proteolysis) or in the gas phase (using collisional activation of protein ions) and followed by mass spectral measurements of deuterium content of individual fragments has become one of the major experimental tools to probe protein structure and dynamics. One difficulty, which often arises in the course of interpretation of HDX MS data, is a need to separate deuterium contribution to the observed isotopic patterns from that of naturally occurring isotopes. Another frequently encountered problem, especially when HDX in solution is followed by protein ion fragmentation in the gas phase, is a need to determine the deuterium content of an internal protein segment based on the measured isotopic distributions of overlapping fragments. While several algorithms were developed in the past several years to address the first problem, the second one did not enjoy as much attention. Here we report a new algorithm based on a maximum entropy principle, which is capable of extracting local exchange data form the isotope distribution of overlapping fragments, as well as subtracting the background due to the presence of natural isotopes and residual deuterium in exchange buffers. The new method is tested with several proteins and appears to generate stable solutions even under unfavorable circumstances, e.g., when the resolving power of a mass analyzer is not sufficient to avoid signal interference or when the isotopic distributions of individual fragments are complex and cannot be approximated with simple binomial distributions. The latter feature makes the algorithm particularly useful when the exchange in solution is correlated or semicorrelated, paving the way to precise structural characterization of non-native protein states in solution.  相似文献   

8.
Determining the structure and dynamics of large biologically relevant molecules is one of the key challenges facing biology. Although X-ray crystallography (XRD) and nuclear magnetic resonance (NMR) yield accurate structural information, they are of limited use when sample quantities are low. Mass spectrometry (MS) on the other hand has been very successful in analyzing biological molecules down to atto-mole quantities and has hence begun to challenge XRD and NMR as the key technology in the life sciences. This trend has been further assisted by the development of MS techniques that yield structural information on biomolecules. Of these techniques, collision-induced dissociation (CID) and hydrogen/deuterium exchange (HDX) are among the most popular. Despite advances in applying these techniques, little direct experimental evidence had been available until recently to verify their proposed underlying reaction mechanisms. The possibility to record infrared spectra of mass-selected molecular ions has opened up a novel avenue in the structural characterization of ions and their reaction products. On account of its high pulse energies and wide wavelength tunability, the free electron laser for infrared experiments (FELIX) at FOM Rijnhuizen has been shown to be ideally suited to study trapped molecular ions with infrared photo-dissociation spectroscopy. In this paper, we review recent experiments in our laboratory on the infrared spectroscopic characterization of reaction products from CID and HDX, thereby corroborating some of the reaction mechanisms that have been proposed. In particular, it is shown that CID gives rise to linear fragment ion structures which have been proposed for some time, but also yields fully cyclical ring structures. These latter structures present a possible challenge for using tandem MS in the sequencing of peptides/proteins, as they can lead to a scrambling of the amino acid sequence information. In gas-phase HDX of an amino acid it is shown that the structure can be changed from a charge solvated to a zwitterionic structure, thereby demonstrating that HDX can be an invasive technique, in fact changing the structure of the analyte. These results emphasize that more fundamental work is required in order to understand the underlying mechanisms in two of the most important structural techniques in MS.  相似文献   

9.
In this report, a method for in-source hydrogen/deuterium (H/D) exchange at atmospheric pressure is reported. The method was named atmospheric pressure photo ionization hydrogen/deuterium exchange mass spectrometry (APPI HDX MS). H/D exchange was performed by mixing samples dissolved in toluene with CH3OD solvent and analyzing the mixture using atmospheric pressure photo ionization mass spectrometry (APPI-MS). The APPI HDX spectra obtained with contact times between the analyte solution and methanol-OD (CH3OD) of?<?0.5 s or 1 h showed the same pattern of H/D exchange. Therefore, it was concluded that APPI HDX occurred in the source but not in the solution. The proposed method does not require a specific type of mass spectrometer and can be performed at atmospheric pressure. H/D exchange can be performed in any laboratory with a mass spectrometer and a commercial APPI source. Using this method, multiple H/D exchanges of aromatic hydrogen and/or H/D exchange of active hydrogen were observed. These results demonstrated that H/D exchange can be used to distinguish between isomers containing primary, secondary, and tertiary amines, as well as pyridine and pyrrole functional groups.
Figure
?  相似文献   

10.
The potential epitope of a recombinant food allergen protein, cashew Ana o 1, reactive to monoclonal antibody, mAb 2G4, has been mapped by solution‐phase amide backbone H/D exchange (HDX) monitored by Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS). Purified mAb 2G4 was incubated with recombinant Ana o 1 (rAna o 1) to form antigen:monoclonal antibody (Ag:mAb) complexes. Complexed and uncomplexed (free) rAna o 1 were then subjected to HDX‐MS analysis. Five regions protected from H/D exchange upon mAb binding are identified as potential conformational epitope‐contributing segments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The metastability of the native fold makes serpin (serine protease inhibitor) proteins prone to pathological conformational change, often by insertion of an extra β‐strand into the central β‐sheet A. How this insertion is made possible is a hitherto unresolved question. By the use of advanced hydrogen/deuterium‐exchange mass spectrometry (HDX‐MS) it is shown that the serpin plasminogen activator inhibitor 1 (PAI‐1) transiently unfolds under native condition, on a second‐to‐minute time scale. The unfolding regions comprise β‐strand 5A as well as the underlying hydrophobic core, including β‐strand 6B and parts of helices A, B, and C. Based thereon, a mechanism is proposed by which PAI‐1 makes transitions through progressively more unfolded states along the reaction coordinate to the inactive, so‐called latent form. Our results highlight the profound utility of HDX‐MS in detecting sparsely populated, transiently unfolded protein states.  相似文献   

12.
In vivo metabolites of ketorolac (KTC) have been identified and characterized by using liquid chromatography positive ion electrospray ionization high resolution tandem mass spectrometry (LC/ESI‐HR‐MS/MS) in combination with online hydrogen/deuterium exchange (HDX) experiments. To identify in vivo metabolites, blood urine and feces samples were collected after oral administration of KTC to Sprague–Dawley rats. The samples were prepared using an optimized sample preparation approach involving protein precipitation and freeze liquid separation followed by solid‐phase extraction and then subjected to LC/HR‐MS/MS analysis. A total of 12 metabolites have been identified in urine samples including hydroxy and glucuronide metabolites, which are also observed in plasma samples. In feces, only O‐sulfate metabolite and unchanged KTC are observed. The structures of metabolites were elucidated using LC‐MS/MS and MSn experiments combined with accurate mass measurements. Online HDX experiments have been used to support the structural characterization of drug metabolites. The main phase I metabolites of KTC are hydroxylated and decarbonylated metabolites, which undergo subsequent phase II glucuronidation pathways. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Mass spectrometry as an analytical tool to study protein folding and structure by hydrogen/deuterium exchange is a relatively new approach. In this study, site-specific amide deuterium content was measured in oxidized and reduced E. coli thioredoxins by using the b(n) ions in electrospray ionization CID MS/MS experiments after 20-s incubation in D(2)O phosphate-buffered solution (pH 5.7). The deuterium levels correlated well with reported NMR-determined H/D exchange rate constants. The deuterium measured by y(n) ions, however, showed much less reliable correlation with rate exchange data. In general, residues in alpha helices and beta sheets, when measured by b(n) ions, showed low incorporation of deuterium while loops and turns had high deuterium levels. Most amide sites in the two protein forms showed similar deuterium levels consistent with the expected similarity of their structures, but there were some differences. The turn consisting of residues 18-22 in particular showed more variability in deuterium content consistent with reported structural differences in the two forms. The deuterium uptake by thioredoxins alkylated at Cys-32 by S-(2-chloroethyl)glutathione and S-(2-chloroethyl)cysteine, in peptides 1-24 and 45-58, was similar to that observed for oxidized and reduced thioredoxins, but several residues, particularly Leu-53 and Thr-54, showed slightly elevated deuterium levels, suggesting that structural changes had occurred from alkylation of the protein at Cys-32. It is concluded that b(n) ions are reliable for determining the extent of site-specific amide hydrogen isotope exchange and that mass spectrometry is useful as a complementary technique to NMR and other analytical methods for probing regional structural characteristics of proteins.  相似文献   

14.
The interplay between membrane proteins and the lipids of the membrane is important for cellular function, however, tools enabling the interrogation of protein dynamics within native lipid environments are scarce and often invasive. We show that the styrene–maleic acid lipid particle (SMALP) technology can be coupled with hydrogen–deuterium exchange mass spectrometry (HDX‐MS) to investigate membrane protein conformational dynamics within native lipid bilayers. We demonstrate changes in accessibility and dynamics of the rhomboid protease GlpG, captured within three different native lipid compositions, and identify protein regions sensitive to changes in the native lipid environment. Our results illuminate the value of this approach for distinguishing the putative role(s) of the native lipid composition in modulating membrane protein conformational dynamics.  相似文献   

15.
Hydrogen deuterium exchange (HDX) coupled to mass spectrometry (MS) is a well-established technique employed in the field of structural MS to probe the solvent accessibility, dynamics and hydrogen bonding of backbone amides in proteins. By contrast, fast photochemical oxidation of proteins (FPOP) uses hydroxyl radicals, liberated from the photolysis of hydrogen peroxide, to covalently label solvent accessible amino acid side chains on the microsecond-millisecond timescale. Here, we use these two techniques to study the structural and dynamical differences between the protein β2-microglobulin (β2m) and its amyloidogenic truncation variant, ΔN6. We show that HDX and FPOP highlight structural/dynamical differences in regions of the proteins, localised to the region surrounding the N-terminal truncation. Further, we demonstrate that, with carefully optimised LC-MS conditions, FPOP data can probe solvent accessibility at the sub-amino acid level, and that these data can be interpreted meaningfully to gain more detailed understanding of the local environment and orientation of the side chains in protein structures.
Graphical Abstract ?
  相似文献   

16.
Trifluoroethanol (TFE)-induced conformational changes in dynorphin A (1-13) were investigated using charge-state distribution (CSD) and hydrogen-deuterium exchange (HDX), combined with electrospray ionization (ESI) mass spectrometry (MS). Individual amino acids involved in secondary structural elements were identified by collision-induced dissociation-tandem mass spectrometry (MS/MS). It was observed that dynorphin A (1-13) largely exists in an unfolded conformation and a folded structure in increasing concentrations of TFE. In 50% TFE, it forms an alpha-helix that encompasses residues 1-9 and remains flexible from residues 10 to 13.  相似文献   

17.
Electrospray ionization mass spectrometry (ESI MS) has emerged recently as a powerful tool for analyzing many structural and behavioral aspects of metalloproteins in great detail. In this review we discuss recent developments in the field, placing particular emphasis on the unique features of ESI MS that lend themselves to metalloprotein characterization at a variety of levels. Direct mass measurement enables the determination of protein-metal ion binding stoichiometry in solution and metalloprotein higher order structure in the case of multi-subunit proteins. MS techniques have been developed for determining the locations of metal-binding centers, metal oxidation states and reaction intermediates of metal-containing enzymes. Other ESI MS techniques are also discussed, such as protein ion charge state distributions and hydrogen/deuterium exchange studies, which can be used to measure metal binding affinities and to shed light on vital dynamic aspects of the functional properties of metalloproteins endowed by metal binding.  相似文献   

18.
Immunoglobulin G (IgG) monoclonal antibodies (mAbs) are a major class of medicines, with high specificity and affinity towards targets spanning many disease areas. The antibody Fc (fragment crystallizable) region is a vital component of existing antibody therapeutics, as well as many next generation biologic medicines. Thermodynamic stability is a critical property for the development of stable and effective therapeutic proteins. Herein, a combination of ion‐mobility mass spectrometry (IM‐MS) and hydrogen/deuterium exchange mass spectrometry (HDX‐MS) approaches have been used to inform on the global and local conformation and dynamics of engineered IgG Fc variants with reduced thermodynamic stability. The changes in conformation and dynamics have been correlated with their thermodynamic stability to better understand the destabilising effect of functional IgG Fc mutations and to inform engineering of future therapeutic proteins.  相似文献   

19.
The modulation of metal ions on protein function is well recognized and of paramount importance in protein biochemistry. To date, very few methods allow direct determination of protein-metal ion interactions, as well as exact stoichiometric binding ratios. In this work we demonstrate the usefulness of two on-line size exclusion gel filtration mass spectrometry approaches to directly detect protein-metal ion adducts, as well as determine exact protein-metal ion stoichiometries. We show that on-line size exclusion column chromatography (SEC) and rapid in-line desalting (RILED) coupled to microelectrospray mass spectrometry (microESI-MS) can be used for such analyses. The SEC approach can be effectively used to both separate proteins in a complex mixture and exchange buffers prior to the electrospray process. While RILED does not allow for protein separation, it provides a much faster high-throughput desalting procedure than the conventional SEC technique. Specifically, we show that SEC/microESI-MS and RILED/MS can be used to determine calcium ion binding stoichiometries to a high-affinity, metal ion binding protein, calbindin D(28K). Furthermore, the same approaches can also be used to determine metal ion binding stoichiometries of low-affinity metal-binding proteins such as Spo0F.  相似文献   

20.
The exposure of electrospray droplets to vapors of deuterating reagents during droplet desolvation in the interface of a mass spectrometer results in hydrogen/deuterium exchange (HDX) on the sub‐millisecond time scale. Deuterated water is used to label ubiquitin and cytochrome c with minimal effect on the observed charge state distribution (CSD), suggesting that the protein conformation is not being altered. However, the introduction of deuterated versions of various acids (e.g., CD3COOD and DCl) and bases (ND3) induces unfolding or refolding of the protein while also labeling these newly formed conformations. The extent of HDX within a protein CSD associated with a particular conformation is essentially constant, whereas the extent of HDX can differ significantly for CSDs associated with different conformations from the same protein. In some cases, multiple HDX distributions can be observed within a given charge state (as is demonstrated with cytochrome c) suggesting that the extent of HDX and CSDs share a degree of complementarity in their sensitivities for protein conformation. The CSD is established late in the evolution of ions in electrospray whereas the HDX process presumably takes place in the bulk of the droplet throughout the electrospray process. Back exchange is also performed in which proteins are prepared in deuterated solvents prior to ionization and exposed to undeuterated vapors to exchange deuteriums for hydrogens. The degree of deuterium uptake is easily controlled by varying the identity and partial pressure of the reagent introduced into the interface. Since the exchange occurs on the sub‐millisecond time scale, the use of deuterated acids or bases allows for transient species to be generated and labeled for subsequent mass analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号