首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-walled carbon nanotubes (CNTs) were non-covalently functionalized by surface wrapping of poly(sodium 4-styrenesulfonate) (PSS) with the aid of ultrasound. The functionalized CNTs were incorporated into poly(butylene succinate) (PBS) through solution coagulation to fabricate CNTs filled PBS nanocomposites. The morphologies of the PBS/CNT nanocomposites were studied by scanning electron microscope (SEM) and transmission electron microscope (TEM), and the effect of loading of functionalized CNT on the rheological behavior, electrical conductivity and mechanical properties of the nanocomposites was investigated systemically. SEM observation indicates that functionalized CNTs dispersed in PBS matrix without obvious aggregation and showed good interfacial adhesion with the PBS phase. TEM observation reveals that a CNT network was formed when the loading of CNTs increased from 0.1 to 0.3 wt%. Rheological investigation indicates the formation of a CNT network with a percolation threshold of only 0.3 wt%. Significant improvement in electrical conductivity occurred at CNT loading of 0.3 wt%, with the value of electrical conductivity increasing by six orders of magnitude compared to neat PBS. Differential scanning calorimetry indicates that the melt crystallization temperature of PBS was improved by ∼14 °C with addition of only 0.05 wt% functionalized CNTs. Tensile tests indicate that both the yield strength and Young's modulus of PBS were apparently reinforced by incorporation of functionalized CNTs, while the elongation at break was reduced gradually.  相似文献   

2.
Mesostructured TiO(2) nanocrystals have been prepared using Pluronic F127 as the structure-directing agent. Platinum nanoparticles at different contents (0.1-1.0 wt%) have been photochemically deposited onto the mesoporous TiO(2). TEM investigation of 0.2 wt% Pt/TiO(2) calcined at 450 °C reveals that the TiO(2) particles are quite uniform in size and shape with the particle sizes of TiO(2) and Pt being 10 and 3 nm, respectively. The photocatalytic activities of the Pt loaded TiO(2) have been assessed and compared with those of nonporous commercial Pt/TiO(2)-P25 by determining the rates and the photonic efficiencies of molecular hydrogen production from aqueous methanol solutions. The results show that the amount of hydrogen evolved on Pt/TiO(2)-450 at low Pt loading (0.2 wt%) is three times higher than that evolved on Pt/TiO(2)-P25 and twelve times higher than that evolved on Pt/TiO(2)-350. Despite the BET surface area of the TiO(2)-450 photocatalyst being 3.5 times higher than that of TiO(2)-P25, a 60% smaller amount of the Pt co-catalyst is required to obtain the optimum photocatalytic hydrogen production activity. The reduced Pt loading on the mesoporous TiO(2) will be important both from a commercial and an ecological point of view.  相似文献   

3.
Stabilized mesoporous TiO2 was synthesized by evaporation induced self assembly (EISA) method and mechanically incorporated into single-walled carbon nanotubes (SWCNT) with different ratios. The physicochemical properties of the nanocomposites (mesoporous TiO2/SWCNT) materials were investigated by Brunauer–Emmett–Teller (BET) measurement, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), photoluminescence (PL) and ultraviolet–visible (UV–Vis) spectroscopy measurements. The catalytic activity of mesoporous TiO2 and nanocomposites were assessed by examining the degradation of rhodamine B as model aqueous solution under visible light. CNTs are facilitating the photocatalytic activity of mesoporous TiO2 in the degradation of rhodamine B efficiently.  相似文献   

4.
The high rate of electron/hole pair recombination reduces the quantum yield of the processes with TiO(2) and represents its major drawback. Adding a co-adsorbent increases the photocatalytic efficiency of TiO(2). In order to hybridize the photocatalytic activity of TiO(2) with the adsorptivity of carbon nanotube, a composite of multi-walled carbon nanotubes and titanium dioxide (MWCNT/TiO(2)) has been synthesized. The composite was characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared absorption spectroscopy (FTIR), and diffuse reflectance UV-vis spectroscopy. The catalytic activity of this composite material was investigated by application of the composite for the degradation of methyl orange. It was observed that the composite exhibits enhanced photocatalytic activity compared with TiO(2). The enhancement in photocatalytic performance of the MWCNT/TiO(2) composite is explained in terms of recombination of photogenerated electron-hole pairs. In addition, MWCNT acts as a dispersing agent preventing TiO(2) from agglomerating activity during the catalytic process, providing a high catalytically active surface area. This work adds to the global discussion of how CNTs can enhance the efficiency of catalysts.  相似文献   

5.
In this article, we report a controllable and reproducible approach to prepare highly ordered 2-D hexagonal mesoporous crystalline TiO2-SiO2 nanocomposites with variable Ti/Si ratios (0 to infinity). XRD, TEM, and N2 sorption techniques have been used to systematically investigate the pore wall structure, and thermal stability functioned with the synthetic conditions. The resultant materials are ultra highly stable (over 900 degrees C), have large uniform pore diameters (approximately 6.8 nm), and have high Brunauer-Emmett-Teller specific surface areas (approximately 290 m2/g). These mesostructured TiO2-SiO2 composites were obtained using titanium isopropoxide (TIPO) and tetraethyl orthosilicate (TEOS) as precursors and triblock copolymer P123 as a template based on the solvent evaporation-induced co-self-assembly process under a large amount of HCl. Our strategy was the synchronous assembly of titanate and silicate oligomers with triblock copolymer P123 by finely tuning the relative humidity of the surrounding atmosphere and evaporation temperature according to the Ti/Si ratio. We added a large amount of acidity to lower condensation and polymerization rates of TIPO and accelerate the rates for TEOS molecules. TEM and XRD measurements clearly show that the titania is made of highly crystalline anatase nanoparticles, which are uniformly embedded in the pore walls to form the "bricked-mortar" frameworks. The amorphous silica acts as a glue linking the TiO2 nanocrystals and improves the thermal stability. As the silica contents increase, the thermal stability of the resulting mesoporous TiO2-SiO2 nanocomposites increases and the size of anatase nanocrystals decreases. Our results show that the unique composite frameworks make the mesostructures overwhelmingly stable; even with high Ti/Si ratios (> or =80/20) the stability of the composites is higher than 900 degrees C. The mesoporous TiO2-SiO2 nanocomposites exhibit excellent photocatalytic activities (which are higher than that for commercial catalyst P25) for the degradation of rhodamine B in aqueous suspension. The excellent photocatalytic activities are ascribed to the bifunctional effect of highly crystallized anatase nanoparticles and high porosity.  相似文献   

6.
The reticular hierarchical structure of butterfly wings (Papilio Paris) is introduced as template for Au/TiO(2) photocatalyst by depositing the Au nanoparticles on TiO(2) matrix, which is carried out by a water-ethanol sol-gel procedure combined with subsequent calcination. The obtained Au/TiO(2) nanocomposites present the reticular hierarchical structure of butterfly wings, and Au nanoparticles with an average size of 7 nm are homogeneously dispersed in TiO(2) substrate. Benefiting from such unique reticular hierarchical structure and composition, the biomorphic Au/TiO(2) exhibits high-harvesting capability and presents superior photocatalytic activity. Especially, the biomorphic Au/TiO(2) at the nominal content of gold to titanium of 8 wt% shows the highest photocatalytic activity and can completely decompose methyl orange within 80 min, which is obviously higher than that of commercial Degussa P25 powders.  相似文献   

7.
提出了一种过渡金属掺杂和碳纳米管(CNT)双重改性TiO2的新方法:首先采用溶胶-凝胶法合成掺杂镍和铁的二氧化钛基催化剂,然后采用流化床化学气相沉积方法(FBCVD)在二氧化钛基催化剂表面接枝生长CNT,得到CNT/Fe-Ni/TiO2复合光催化剂.通过X射线衍射、扫描电子显微镜、比表面分析、拉曼光谱、紫外-可见吸收光谱、荧光光谱等方法考察了双重改性复合光催化剂CNT/Fe-Ni/TiO2的结构和性能,通过降解亚甲基蓝溶液评价了双重改性复合光催化剂的活性.结果表明,在TiO2表面接枝的CNT具有较好的石墨化结构,CNT生长过程中小部分TiO2由锐钛矿向金红石晶型转变.过渡金属和CNT双重改性有效地克服了TiO2的比表面积小、量子效率低等缺点,明显提高了TiO2的光催化活性.  相似文献   

8.
首先用偶联剂苯胺基甲基三乙氧基硅烷(AMTES)对纳米TiO2进行表面修饰(AMTES-TiO2), 然后通过苯胺单体在AMTES-TiO2表面的原位化学氧化接枝聚合, 制备了基于共价键结合的聚苯胺(PANI)/AMTES-TiO2纳米复合光催化材料. 用红外光谱(FTIR), X射线衍射(XRD), 热重分析(TGA), 紫外-可见漫反射光谱(UV-Vis-DRS)和荧光发射光谱(PL)等技术对复合材料进行了表征. 以亚甲基蓝(MB)为目标降解物, 研究了PANI/AMTES-TiO2复合材料在太阳光和紫外光下的光催化性能. 结果表明:聚苯胺敏化拓宽了TiO2的光谱响应范围, 复合材料在紫外和可见光区都有较强的吸收, 提高了光能的利用率和光生载流子的分离效率, 使复合材料表现出较高的光催化活性; 苯胺与AMTES-TiO2的质量比(w)对复合材料的光催化活性有较大影响, 当w为0.025时, 复合材料在两种光源下的催化性能均优于TiO2和AMTES-TiO2.  相似文献   

9.
In this work, fullerene modified TiO(2) nanocomposites (denoted as C(60)/TiO(2)) with low C(60) loadings (0-1.5 wt.%) have been prepared by a simple hydrothermal method using tetrabutylorthotitanate (TBOT, Ti(OC(4)H(9))(4)) as the titanium precursor. The as-prepared C(60)/TiO(2) nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, UV-visible spectrophotometry, nitrogen adsorption, and X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy. The formation of hydroxyl radicals (˙OH) on the surface of UV-illuminated TiO(2) is probed by photoluminescence using terephthalic acid as a probe molecule. Our results have demonstrated that C(60) molecules can be dispersed as a monolayer onto bimodal mesoporous TiO(2)via covalent bonding. The photocatalytic oxidation rate of gas-phase acetone over C(60)/TiO(2) nanocomposites is greater than that over pure TiO(2), commercial Degussa P25 (P25) and C(60)-TiO(2) counterparts prepared by simple impregnating mixing. In particular, 0.5 wt.% C(60)/TiO(2) nanocomposites show the greatest photocatalytic activity with the rate constant k exceeding that of P25 by a factor of 3.3. Based on the results of the current study, we propose that C(60) molecules doped onto TiO(2) act as "electron acceptors" responsible for the efficient separation of photogenerated charge carriers and the enhancement of photocatalytic activity. The proposed mechanism for the observed photocatalytic performance of C(60)/TiO(2) nanocomposites is further corroborated by experiments on hydroxyl radical and transient photocurrent response.  相似文献   

10.
提出了一种在掺氟的SnO2(FTO)导电玻璃上组装碳纳米管(CNTs)/Fe-Ni/TiO2多孔复合膜光催化剂的新方法.采用喷涂热解法(SPD)将掺杂镍和铁的含有嵌段聚合物P123的二氧化钛前驱体溶胶涂覆在FTO导电玻璃上,制备Fe-Ni/TiO2多孔膜,再采用化学气相沉积法(CVD)在Fe-Ni/TiO2膜上原位生长CNTs,得到CNTs/Fe-Ni/TiO2多孔复合膜光催化剂.CNTs/Fe-Ni/TiO2复合膜具有多级孔结构特征,在TiO2表面原位生长的CNTs不但具有较好的石墨化结构,且CNTs较均匀地分布在整个膜层的孔中.考察了CNTs/Fe-Ni/TiO2复合膜光催化剂的结构和性能,并通过降解甲基橙溶液评价了复合膜的光催化活性.结果表明,CNTs的复合及铁和镍的掺杂等改性显著提高了TiO2膜材料的光催化活性.  相似文献   

11.
A sol-gel method was used to prepare TiO2and sulfur-TiO2(S-TiO2)nanocomposites, which were characterized by N2 adsorption-desorption, X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescene, ultraviolet visible and transmission electron microscopy measurements. The photocatalytic performance of TiO2 and S-TiO2nanocomposites, with respect to the photocatalytic oxidation of cyanide under visible light irradiation, was determined. The results reveal that S is well dispersed on the surface of TiO2 nanoparticles. Additionally, the surface area of the S-TiO2nano-composites was observed to be smaller than that of the TiO2nanoparticles because of blocked pores caused by doping with S. The S-TiO2nanocomposite (0.3 wt% S) exhibited the lowest band gap and the highest photocatalytic activity in the oxidation of cyanide. The photocatalytic performance of S-TiO2(0.3 wt% S) nanocomposites was stable, even after the fifth reuse of the nanoparticles for the oxidation of cyanide.  相似文献   

12.
In this work, the chitosan ternary nanocomposites with two-dimensional (2D) clay platelets and one-dimensional (1D) CNTs have been successfully prepared by a simple solution-intercalation/mixing method in acid media. It was found that the thermal degradation temperature of chitosan (at 50% weight loss) could be only improved in about 20-30 °C by adding 3 wt% either clay or CNTs, however, almost 80 °C increase of degradation temperature could be achieved by adding 2 wt% clay and 1 wt% CNTs together. Dynamic mechanical measurement demonstrated an obviously improved storage modulus for chitosan/clay-CNTs than that for the corresponding binary chitosan/clay or chitosan/CNT nanocomposites with the same total filler content (3 wt%). For the solvent vapor permeation properties, a largely improved benzene vapor barrier property was observed only in chitosan/clay-CNT ternary nanocomposites and depended on the ratio of clay to CNTs. XRD, SEM and TEM results showed that both clay and CNTs could be well dispersed in the ternary nanocomposites with the nanotubes located around the clay platelets. FTIR showed an improved interaction between the fillers and chitosan by using both clay and CNTs. A much enhanced solid-like behavior was observed in the ternary nanocomposites, compared with the corresponding binary nanocomposites with the same total filler content, as indicated by rheological measurement. The unique synergistic effect of two-dimensional (2D) clay platelets and one-dimensional (1D) CNTs on the property enhancement could be tentatively understood as due to a formation of much jammed filler network with 1D CNTs and 2D clay platelets combined together. Our work demonstrates a good example for the preparation of high performance polymer nanocomposites by using nanofillers with different dimensions together.  相似文献   

13.
半导体光催化剂TiO2因具有绿色环保无污染、化学稳定性好及可实现稳定产氢等优点而广泛应用于光解水、废水处理和空气净化等领域.然而,锐钛矿相TiO2禁带宽度约为3.2 eV,仅对紫外光响应.而在太阳光中,44%左右为可见光,紫外光仅占不到4%.为了提高TiO2对太阳光的利用率和在可见光照射下的光催化活性,近年来人们采用掺杂金属/非金属离子以及与可见光催化剂复合等方法对TiO2进行改性.但是这些离子掺杂的方法会不可避免地在TiO2晶格中形成结构缺陷,这些结构缺陷作为光生电子和空穴的复合中心不利于电子和空穴分离.最近研究表明,通过Ti3+自掺杂可以很好提高TiO2可见光催化活性,但是目前制备Ti3+掺杂TiO2的方法较复杂,形成的Ti3+掺杂易在表面积聚而被进一步氧化,影响其光催化稳定性,不利于实际应用.因此,开发具有良好电子-空穴分离效率的可见光催化剂引起了广泛的研究兴趣.本文通过原位自掺杂Ti3+来提高TiO2可见光光催化活性.以TiCl3为钛源, H2O为溶剂, F127为软模板,采用溶剂挥发诱导自组装的方法制备了蠕虫状Ti3+自掺杂的介孔TiO2.采用X射线衍射(XRD)、N2物理吸附、紫外-可见漫反射(UV-vis)、透射电子显微镜和电子顺磁共振(EPR)对所制备样品结构、结晶度和形貌等进行了表征分析.通过控制表面活性剂用量和焙烧温度优化了Ti3+自掺杂介孔TiO2的光催化活性.结果表明,在模拟太阳光照射下,所制样品对气相光催化氧化NO和水相降解有机染料亚甲基蓝表现出优异的催化性能和稳定性. Ti3+自掺杂介孔TiO2有效扩展了催化剂的光吸收范围,提高了光生电子空穴的迁移效率.其优异的光催化活性和稳定性主要归因于掺杂在TiO2骨架中的Ti3+和所合成催化剂多孔性之间的协同效果.固体UV-vis结果表明,所合成的TiO2具有很好的可见光响应,主要归因于在TiO2材料合成过程中,部分Ti3+未被完全氧化, Ti3+掺入可以有效降低TiO2的禁带宽度.通过计算可知合成的TiO2禁带宽度为2.7 eV.通过低温EPR测试进一步证明了Ti3+的存在,而且Ti3+主要掺杂在TiO2体相中. N2物理吸附结果表明,随焙烧温度不断提高,所得产物的比表面积先增加后减少,当焙烧温度在500 oC时,比表面积最大,但至550 oC时,比表面积、孔径和孔体积增大,表明催化剂的孔结构被破坏.表面活性剂F127的用量对样品比表面积和孔径大小也有影响,当其用量为0.54 g时,所得产物的比表面积最大.我们将所合成的TiO2应用于污染气体NO的氧化,考察了焙烧温度和表面活性剂用量对光催化剂性能的影响.结果表明,当表面活性剂用量为0.54 g,焙烧温度为500oC时,所制催化剂在模拟太阳光和可见光照射下都表现出最好的NO去除转化率.将使用过的催化剂离心洗涤后进行连续反应3.5 h,依然保持很高的NO去除转化率.催化剂高活性及稳定性的主要原因是Ti3+的掺杂将TiO2光响应范围拓展到可见光区域,且Ti3+掺杂和介孔结构之间的协同作用有利于促进光生电子和空穴的分离.当催化剂在低于500 oC焙烧时,所得催化剂结晶度较低,不利于光生电子-空穴的分离,而高温焙烧则会导致催化剂介孔结构遭到破坏,不利于NO气体吸附和产物脱附.表面活性剂对催化剂活性影响较小,在可见光照射下催化剂均表现出很好的光催化活性.此外,该Ti3+自掺杂介孔TiO2在液相条件下对有机染料亚甲基蓝也表现出很好的去除效果,可见光照射2 h,亚甲基蓝去除率接近100%.  相似文献   

14.
A controllable and reproducible synthesis of highly ordered two-dimensional hexagonal mesoporous, crystalline bismuth-doped TiO(2) nanocomposites with variable Bi ratios is reported here. Analyses by transmission electron microscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy reveal that the well-ordered mesostructure is doped with Bi, which exists as Bi(3+) and Bi((3+x+)). The Bi-doped mesoporous TiO(2) (ms-TiO(2)) samples exhibit improved photocatalytic activities for simultaneous phenol oxidation and chromium reduction in aqueous suspension under visible and UV light over the pure ms-TiO(2), P-25, and conventional Bi-doped titania. The high catalytic activity is due to both the unique structural characteristics and the Bi doping. This new material extends the spectral response from UV to the visible region, and reduces electron-hole recombination, which renders the 2.0% Bi-doped ms-TiO(2) photocatalyst highly responsive to visible light.  相似文献   

15.
Rational nanostructure manipulation has been used to prepare nanocomposites in which multiwalled carbon nanotubes (MWCNTs) were embedded inside mesoporous layers of oxides (TiO(2), ZrO(2), or CeO(2)), which in turn contained dispersed metal nanoparticles (Pd or Pt). We show that the MWCNTs induce the crystallization of the oxide layer at room temperature and that the mesoporous oxide shell allows the particles to be accessible for catalytic reactions. In contrast to samples prepared in the absence of MWCNTs, both the activity and the stability of core-shell catalysts is largely enhanced, resulting in nanocomposites with remarkable performance for the water-gas-shift reaction, photocatalytic reforming of methanol, and Suzuki coupling. The modular approach shown here demonstrates that high-performance catalytic materials can be obtained through the precise organization of nanoscale building blocks.  相似文献   

16.
It is well known that carbon nanotubes (CNTs) have excellent electrical properties and can be used as the nanofiller in natural polymers to produce conductive CNT/polymer nanocomposites. In this study, the conductive behavior of CNT-reinforced natural polymer nanocomposites was investigated. The effect of CNT concentration on the conductivity of CNT/natural polymer nanocomposites was also investigated. The natural polymers used were plasticized starch (PS) and chitosan (CS). FTIR spectroscopy was used to examine the interactions between PS, CS, and CNTs. TEM analysis on both nanocomposites were made to study the dispersion states of CNTs in both polymers. The results showed that the surface resistivities of both CNT/PS and CNT/CS nanocomposites decreased steeply with increasing CNT concentration. Particularly, the CNT/CS nanocomposites showed a better conductivity than the CNT/PS composites at the same CNT concentration. The TEM result showed that CNT/CS nanocomposites had better dispersibility and formation of fully connected, three-dimensional network structures between the CNTs than the CNT/PS nanocomposites, which results in the superior conductive property of CNT/CS nanocomposites compared to the CNT/PS nanocomposites.  相似文献   

17.
Hybrid Pt/TiO(2) nanostructures with diverse morphologies from nanodot, nanowire to mesoporous structures were obtained by a one-step synthesis based on block copolymer self-assembly. The structural transformation was easily tuned by controlling the relative amount of TiO(2) sol-gel precursor to poly(styrene-block-ethylene oxide) diblock copolymer (PS-b-PEO). These Pt/TiO(2) nanocomposites were utilized as photocatalysts with enhanced activity via synergistic coupling. Key parameters including the amount of TiO(2), types of morphology of photocatalysts, and the platinization of TiO(2) discussed in this study affected photocatalytic performance given that the hybrids were well-dispersed in nanopatterned configurations.  相似文献   

18.
陈琪  费霞  何琴琴  武其亮  何兵  刘雪霆 《应用化学》2014,31(10):1222-1228
以嵌段共聚物P123为模板剂,采用蒸发诱导自组装法制备了铽负载介孔TiO2光催化剂,并利用XRD、N2吸附解吸和UV-Vis吸收光谱等技术手段对样品进行了表征。 制备的样品为锐钛矿和金红石混合晶相,以罗丹明B为模拟有机降解物,样品显示了良好的可见光催化活性。 研究发现0.7%的铽负载和380 ℃的煅烧温度是较佳的制备条件。 介孔结构所具有的高的比表面积、小的晶粒尺寸、铽负载诱导的电荷分离和可见光吸收增强协同提高了光催化活性。 同时,提出了铽负载二氧化钛诱导增强光催化作用的机理。  相似文献   

19.
Polymer blend nanocomposites based on thermoplastic polyurethane (PU) elastomer, polylactide (PLA) and surface modified carbon nanotubes were prepared via simple melt mixing process and investigated for its mechanical, dynamic mechanical and electroactive shape memory properties. Chemical and structural characterization of the polymer blend nanocomposites were investigated by Fourier Transform infrared (FT-IR) and wide angle X-ray diffraction (WAXD). Loading of the surface modified carbon nanotube in the PU/PLA polymer blends resulted in the significant improvement on the mechanical properties such as tensile strength, when compared to the pure and pristine CNT loaded polymer blends. Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the PU/PLA blend slightly increases on loading of pristine CNT and this effect is more pronounced on loading surface modified CNTs. Thermal and electrical properties of the polymer blend composites increases significantly on loading pristine or surface modified CNTs. Finally, shape memory studies of the PU/PLA/modified CNT composites exhibit a remarkable recoverability of its shape at lower applied dc voltages, when compared to pure or pristine CNT loaded system.  相似文献   

20.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号