首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Electroanalysis》2017,29(6):1618-1625
An electrochemical sensor was developed based on gold nanoparticles incorporated in mesoporous MFI zeolite for the determination of purine bases. Au nanoparticles (AuNPs) were incorporated into the mesoporous MFI zeolite (AuNPs/m‐MFI) by post‐grafting reaction. The composite materials were characterized by transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and electrochemical methods. Au nanoparticles with a size of 5‐20 nm are uniformly dispersed in the pores of mesoporous MFI zeolite. And the morphology of MFI zeolite can be perfectly kept after pore expansion and Au nanoparticles incorporation. The electrocatalytic oxidation of purine bases (guanine and adenine in DNA) is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The surface‐confined Au nanoparticles provide the good catalytic activity for oxidation of purine bases. The simultaneous detection of guanine and adenine can be achieved at AuNPs/m‐MFI composites modified glassy carbon electrode (GCE). The electrochemical sensor based on AuNPs/m‐MFI exhibits wide linear range of 0.5–500 μM and 0.8–500 μM with detection limit of 0.25 and 0.29 μM for guanine and adenine, respectively. Moreover, the electrochemical sensor is applied to evaluation of guanine and adenine in herring sperm DNA samples with satisfactory results.  相似文献   

2.
A series of 3 wt% Ru embedded on ordered mesoporous carbon (OMC) catalysts with different pore sizes were prepared by autoreduction between ruthenium precursors and carbon sources at 1123 K. Ru nanoparticles were embedded on the carbon walls of OMC. Characterization technologies including power X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR) were used to scrutinize the catalysts. The catalyst activity for Fischer-Tropsch synthesis (FTS) was measured in a fixed bed reactor. It was revealed that 3 wt% Ru-OMC catalysts exhibited highly ordered mesoporous structure and large surface area. Compared with the catalysts with smaller pores, the catalysts with larger pores were inclined to form larger Ru particles. These 3 wt% Ru-OMC catalysts with different pore sizes were more stable than 3 wt% Ru/AC catalyst during the FTS reactions because Ru particles were embedded on the carbon walls, suppressing particles aggregation, movement and oxidation. The catalytic activity and C5+ selectivity were found to increase with the increasing pore size, however, CH4 selectivity showed the opposite trend. These changes may be explained in terms of the special environment of the active Ru sites and the diffusion of products in the pores of the catalysts, suggesting that the activity and hydrocarbon selectivity are more dependent on the pore size of OMC than on the Ru particle size.  相似文献   

3.
We report here a thermal reduction method for preparing Ru catalysts supported on a carbon substrate. Mesoporous SBA-15 silica, surface-carbon-coated SBA-15, templated mesoporous carbon, activated carbon, and carbon black with different pore structures and compositions were employed as catalyst supports to explore the versatility of the thermal reduction method. Nitrogen adsorption, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, thermogravimetric analysis, and X-ray absorption near-edge structure techniques were used to characterize the samples. It was observed that carbon species that could thermally reduce Ru species at high temperatures played a vital role in the reduction process. Ru nanoparticles supported on various carbon-based substrates exhibited good dispersion with an appropriate particle size, high crystallinity, strong resistance against oxidative atmosphere, less leaching, lack of aggregation, and avoidance of pore blocking. As such, these catalysts display a remarkably high catalytic activity and stability in the hydrogenation of benzene and toluene (up to 3-24-fold compared with Ru catalysts prepared by traditional methods). It is believed that the excellent catalytic performance of the thermally reduced Ru nanoparticles is related to the intimate interfacial contact between the Ru nanoparticles and the carbon support.  相似文献   

4.
The structural, energetic and magnetic properties of Ru nanoparticles deposited on pristine and defective graphene have been thoroughly studied by first-principles based calculations. The calculated binding energy of a Ru(13) nanoparticle on a single vacancy graphene is as high as -7.41 eV, owing to the hybridization between the dsp states of the Ru particles with the sp(2) dangling bonds at the defect sites. Doping the defective graphene with boron would further increase the binding energy to -7.52 eV. The strong interaction results in the averaged d-band center of the deposited Ru nanoparticle being upshifted toward the Fermi level from -1.41 eV to -1.10 eV. Further study reveals that the performance of the nanocomposites against hydrogen, oxygen and carbon monoxide adsorption is correlated to the shift of the d-band center of the nanoparticle. Thus, Ru nanoparticles deposited on defective graphene are expected to exhibit both high stability against sintering and superior catalytic performance in hydrogenation, oxygen reduction reaction and hydrogen evolution reaction.  相似文献   

5.
The influence of the nature of carbon materials used as a support for Ru/C catalysts on levulinic acid hydrogenation with formic acid as a hydrogen source toward gamma-valerolactone was investigated. It has been shown that the physicochemical properties of carbon strongly affect the catalytic activity of Ru catalysts. The relationship between the hydrogen mobility, strength of hydrogen adsorption, and catalytic performance was established. The catalyst possessing the highest number of defects, stimulating metal support interaction, exhibited the highest activity. The effect of the catalyst grain size was also studied. It was shown that the decrease in the grain size resulted in the formation of smaller Ru crystallites on the catalyst surface, which facilitates the activity.  相似文献   

6.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH‐universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru‐M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH‐universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm?2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm?2. This performance is among the best catalytic activities reported for any platinum‐free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

7.
Carbon materials were used as supports for Ag catalysts that are prepared using the conventional wet impregnation method, and their catalytic properties for CO selective oxidation in excess hydrogen at temperatures below 483 K were tested. A variety of techniques, e.g. N2 adsorption, XPS, TPD, UV-Vis DRS, TEM and SEM, were used to determine the influence of physical and chemical properties of the carbon on the properties of Ag catalyst. It was found that defects on the carbon surface served as nucleation sites for silver ions, while functional groups on carbon surface induced their reduction to the metallic form. The formation of silver particles on carbon was governed by homogeneous and/or heterogeneous nucleation during the impregnation and subsequent activation processes. The best catalytic performance was obtained with a Ag/carbon black catalyst with a uniform size distribution of silver nanoparticles (about 12 nm), moderate BET surface area (with a mesoporous structure), and a limited amount of carbon-oxygen groups. The research indicates that carbon materials are potentially good supports for silver catalysts for preferential oxidation of CO in excess hydrogen.  相似文献   

8.
《中国化学快报》2023,34(2):107749
Hierarchical carbon material is used as a star cocatalyst in the field of photocatalysis due to its excellent catalytic properties. In this work, mesoporous carbon nitride sheet (MCNS) photocatalyst introduced nitrogen-doped hollow carbon spheres assembled with cobalt nanoparticles (Co@NHC) is synthesized by electrostatic adsorption. A series of characterizations are analyzed to display the structures, morphologies and optical properties of as-prepared materials. The photocatalytic activity of Co@NHC/MCNS material is evaluated with hydrogen evolution under visible light irradiation. The results indicate that 5 wt% Co@NHC/MCNS material reveals higher photocatalytic activity of hydrogen evolution rate of 3675 µmol/g with 4 h reaction time, which is 159 times than that of pure MCNS material. The carbon material with excellent charge transport properties can effectively accelerate the charge transfer from ultrathin MCNS to cobalt nanoparticles. The goal of improving the photocatalytic performance of Co@NHC/MCNS material is achieved. As a result, it provides a feasible and promised approach for doping transition metals to enhance photocatalytic activity.  相似文献   

9.
Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core–shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2-anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec−1, low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.  相似文献   

10.
介孔炭的孔结构对其负载的Ru基氨合成催化剂性能的影响   总被引:1,自引:0,他引:1  
采用模板法合成了介孔炭(MC),研究了其孔结构对其负载的Ru基氨合成催化剂Ba-Ru-K/MC性能的影响,采用N2吸附脱附、扫描电镜和透射电镜等手段对介孔炭的孔结构进行了表征.研究发现,介孔炭载体的孔结构取决于模板剂的用量,当SiO2/C质量比为1.0时,所制介孔炭比表面积最大.介孔炭负载的Ba-Ru-K催化剂活性与其介孔比表面积相关.在425℃,10MPa和10000h-1条件下,合成氨的反应速率为139mmol/(gcat·h).  相似文献   

11.
TiO2-CeO2介孔复合氧化物的合成及应用   总被引:9,自引:0,他引:9  
以氯化十六烷基吡啶(C16PyCl)为模板剂, 在室温、中性条件下合成了TiO2-CeO2介孔复合氧化物, 分别用红外光谱(FT-IR)、X射线粉末衍射(XRD)和BET 比表面测定等技术对介孔TiO2的结构、晶相和比表面积进行了表征. 结果表明, Ce4+的引入能稳定介孔结构. 负载活性组分Ru 后, Ru 颗粒与介孔复合载体发生相互作用, 尽管可能会部分堵塞孔道, 但对于甲醇分解为CO 和H2, Ru/m-TiO2-CeO2的催化活性依然远高于Ru/m-TiO2. Ru 和CeO2之间的相互作用对甲醇分解反应表现出协同效应.  相似文献   

12.
The efficiency of a single direct methanol fuel cell (DMFC) with Pt–Ru decorated carbon nanotubes directly grown on carbon cloth (Pt–Ru/CNTs/CC) as a catalytic gas diffusion layer (GDL) at the anode was evaluated by polarization analysis. Pt–Ru nanoparticles were electrodeposited on dense carbon nanotubes directly grown on carbon cloth in ethylene glycol containing sulfuric acid solutions. The presence of relatively well dispersed Pt–Ru nanoparticles (4–6 nm) on the surfaces of CNTs was confirmed by transmission electron microscopy. Two more GDLs, one with dense CNTs but without the presence of Pt–Ru nanoparticles and the other with neither CNTs nor catalysts, were also prepared for comparison purpose. For quantitatively evaluating the performance of the catalytic GDL, three identical membrane–electrode-assemblies were prepared and laminated with different GDLs before they were used to construct DMFCs for performance test. It was found via polarization analyses the catalytic GDL was able to promote the peak specific power density of the DMFC by 27% at ambient temperature.  相似文献   

13.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH-universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru-M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH-universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm−2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm−2. This performance is among the best catalytic activities reported for any platinum-free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

14.
A mesoporous PtCu catalyst modified with a Ru submonolayer is successfully synthesized by a facile electrochemical process of electrodeposition, dealloying and Ru underpotential deposition. The material has a large specific surface area comparable to nanoparticles (11 m(2) g(-1)) and exhibits a promising catalyst activity for the methanol oxidation reaction.  相似文献   

15.
氮掺杂有序介孔碳材料不仅具有高的比表面积、大的孔容和均一可调的孔径等优点,其骨架中丰富的氮原子还可以对材料的物理化学性质、配位金属电荷密度等进行调控,是一类优异的催化剂载体.本文利用软模板(嵌段共聚物F127为模板),以间氨基苯酚为碳源和氮前体,制备出较高含氮量(9.58 wt%)和比表面积(417 m2/g),以及规则孔径分布的介孔碳材料.结果表明,制备的材料具有三维立方相结构.以该碳材料作为载体,使用传统浸渍氢气还原的策略负载纳米铂颗粒.发现氮掺杂的载体能够有效控制金属纳米颗粒的尺寸,可实现超小尺寸Pt纳米颗粒的有效负载(1.0±0.5 nm),且纳米颗粒均匀分布于介孔碳材料的孔道中.相比而言,使用相同负载方法的情况下,以不掺氮的介孔碳材料为载体,纳米粒子的尺寸较难控制(4.4±1.7 nm)且会发生孔道外颗粒聚集的情况.研究表明,骨架中的氮原子与金属间弱的相互作用对纳米粒子有稳定作用.这对制备超小尺寸的金属纳米粒子催化剂具有一定的指导意义.此外,由于纳米粒子的尺寸将大大影响催化剂活性中心的暴露程度,进而影响催化剂活性.因此,我们以硝基苯类化合物的氢化反应来评价该催化剂的催化性能.在室温和1 MPa H2的温和条件下,氮掺杂的介孔碳负载催化剂表现出了优异的催化性能.反应0.5 h,对氯硝基苯可完全转化,且选择性高达99%.相比而言,商业化的Pt/C催化剂上反应的转化率和选择性分别为89%和90%.其它传统催化剂的比较,如Pt/SiO2,Pt/TiO2,同样表明,氮掺杂介孔碳负载的催化剂具有更优异的催化性能.在相同反应条件下,Pt/SiO2催化剂只能得到46%的转化率和93%的选择性,而Pt/TiO2催化剂虽然能够实现完全转化,但选择性也仅为91%.由此可见,氮掺杂的负载催化剂可大大提高反应活性和选择性,能有效抑制脱氯现象的发生.这种高的催化性能可能与催化剂的介孔结构、氮功能化载体以及超小尺寸的Pt纳米粒子的稳定有关.由于氮原子和介孔孔道的限域作用,氮掺杂介孔碳负载的催化剂也具有良好的催化稳定性,循环使用10次后,催化活性和选择性几乎没有下降.结果表明,循环使用后的催化剂金属粒子尺寸变化不大,进一步表明氮掺杂介孔碳载体对金属纳米颗粒的稳定作用.  相似文献   

16.
Graphene nanosheet‐supported ultrafine metal nanoparticles encapsulated by thin mesoporous SiO2 layers were prepared and used as robust catalysts with high catalytic activity and excellent high‐temperature stability. The catalysts can be recycled and reused in many gas‐ and solution‐phase reactions, and their high catalytic activity can be fully recovered by high‐temperature regeneration, should they be deactivated by feedstock poisoning. In addition to the large surface area provided by the graphene support, the enhanced catalytic performance is also attributed to the mesoporous SiO2 layers, which not only stabilize the ultrafine metal nanoparticles, but also prevent the aggregation of the graphene nanosheets. The synthetic strategy can be extended to other metals, such as Pd and Ru, for preparing robust catalysts for various reactions.  相似文献   

17.
Nitrogen-doped mesoporous carbon nanosphere (NMCS) with tunable sizes and uniform mesoporosity was synthesized by a facile soft-templating method. During the synthesis, F127 (PEO–PPO–PEO triblock copolymer) could be used not only as a soft template to generate the mesostructure but also as a size-control agent to tailor the size of NMCS in a relatively wide range of 100 to 700 nm. In addition, the synthesis process was simple and suitable for large-scale production. Moreover, the NMCS was used as support of ultrafine Ru nanoparticles (Ru/NMCS), which exhibited good catalytic performances for selective hydrogenation of quinolones. It is expected that the simple synthetic strategy for the NMCS can generate extensive interest in many catalysis and sorption applications.  相似文献   

18.
《中国化学快报》2020,31(9):2512-2515
Ru and Co are highly dispersed on the surface of TiO2 nanoparticles with an easy coprecipitation method to fabricate a novel Ru-based catalyst (Ru/Co-TiO2). The fabricated Ru/Co-TiO2 catalyst exhibits superior catalytic performance for promoting NaBH4 hydrolysis in alkaline medium, showing an impressive hydrogen generation rate per gram Ru as high as 172 L min−1 gRu-1, which is better than most of recently reported Ru-based catalysts. In addition, the fabricated Ru/Co-TiO2 catalyst also shows excellent durability in cycle use, with only 2.9% activity loss after being used for 5 cycles. These advantages make the developed Ru/Co-TiO2 catalyst a potential choice for promoting hydrogen generation from NaBH4 hydrolysis.  相似文献   

19.
《中国化学快报》2023,34(7):107788
Alkaline hydrogen evolution reaction (HER) suffers from a sluggish kinetic, which requires the elaborate catalytic interface and micro-nanoscale architecture engineering of the electrocatalysts to accelerate the water dissociation and hydrogen evolution. Herein, the heterointerface engineering was proposed for promoting the alkaline HER by constructing the highly exposed Ru/RuS2 heterostructures homogeneously distributed on hollow N/S-doped carbon microspheres (Ru/RuS2@h-NSC). Benefited from the synergistic effect of heterointerfacial Ru/RuS2, the high accessibility of the active sites on both inner and outer surface of mesoporous shells and the efficient mass transport, Ru/RuS2@h-NSC affords a remarkable catalytic performance with an overpotential of 26 mV@10 mA/cm2 for alkaline HER, outperforming most of the state-of-the-art catalysts. Further applying Ru/RuS2@h-NSC and its oxidized derivate for the overall alkaline water splitting, the required cell voltage is much lower than that of the commercial Pt/C||RuO2 pair to achieve the same current density. Our study may allow us to guide the design of micro-nanoreactors with optimal catalytic interfaces for promising electrocatalytic applications.  相似文献   

20.
The direct electrocatalytic reduction of hydrogen peroxide in alkaline medium at a carbon ionic liquid electrode modified with copper oxide nanoparticles was investigated. The electrode was prepared by mixing graphite particles, ionic liquid (n-octylpyridium hexafluorophosphate) and copper oxide nanoparticles. Unlike the film-modified electrode, the fabrication of this electrode is simple and highly reproducible. The combination of the good conductivity of the ionic liquid and the high catalytic activity of the nanoparticles resulted in an electrode with attractive properties for the determination of hydrogen peroxide. The concentration of NaOH and the loading of copper oxide nanoparticles were optimized. The linear range for the determination of hydrogen peroxide is from 1.0 μM to 2.5 mM, the detection limit is 0.5 μM. High stability, sensitivity, selectivity and reproducibility, fast response, the ease of preparation, and surface renewal made the electrode well suitable for the determination of hydrogen peroxide in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号