首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   

2.
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   

3.
《化学:亚洲杂志》2017,12(3):293-297
Ag2O cubes, truncated octahedra, rhombic dodecahedra, and rhombicuboctahedra were synthesized in aqueous solution. Two tungsten probes were brought into contact with a single particle for electrical conductivity measurements. Strongly facet‐dependent electrical conductivity behaviors have been observed. The {111} faces are most conductive. The {100} faces are moderately conductive. The {110} faces are nearly non‐conductive. When electrodes contacted two different facets of a rhombicuboctahedron, asymmetrical I–V curves were obtained. The {111} and {110} combination gives the best I–V curve expected for a p‐n junction with current flowing in one direction through the crystal but not in the opposite direction. Density of states (DOS) plots for varying number of different lattice planes of Ag2O match with the experimental results, suggesting that the {111} faces are most electrically conductive. The thicknesses of the thin surface layer responsible for the facet‐dependent properties of Ag2O crystals have been determined.  相似文献   

4.
This article presents a quantitative analysis of the role played by poly(vinylpyrrolidone) (PVP) in seed-mediated growth of Ag nanocrystals. Starting from Ag nanocubes encased by {100} facets as the seeds, the resultant nanocrystals could take different shapes depending on the concentration of PVP in the solution. If the concentration was above a critical value, the seeds simply grew into larger cubes still enclosed by {100} facets. When the concentration fell below a critical value, the seeds would evolve into cuboctahedrons enclosed by a mix of {100} and {111} facets and eventually octahedrons completely covered by {111} facets. We derived the coverage density of PVP on Ag(100) surface by combining the results from two measurements: (i) cubic seeds were followed to grow at a fixed initial concentration of PVP to find out when {111} facets started to appear on the surface, and (ii) cubic seeds were allowed to grow at reduced initial concentrations of PVP to see at which concentration {111} facets started to appear from the very beginning. We could calculate the coverage density of PVP from the differences in PVP concentration and the total surface area of Ag nanocubes between these two samples. The coverage density was found to be 140 and 30 repeating units per nm(2) for PVP of 55,000 and 10,000 g/mol in molecular weight, respectively, for cubic seeds of 40 nm in edge length. These values dropped slightly to 100 and 20 repeating units per nm(2), respectively, when 100 nm Ag cubes were used as the seeds.  相似文献   

5.
We report the highly facet‐dependent catalytic activity of Cu2O nanocubes, octahedra, and rhombic dodecahedra for the multicomponent direct synthesis of 1,2,3‐triazoles from the reaction of alkynes, organic halides, and NaN3. The catalytic activities of clean surfactant‐removed Cu2O nanocrystals with the same total surface area were compared. Rhombic dodecahedral Cu2O nanocrystals bounded by {110} facets were much more catalytically active than Cu2O octahedra exposing {111} facets, whereas Cu2O nanocubes displayed the slowest catalytic activity. The superior catalytic activity of Cu2O rhombic dodecahedra is attributed to the fully exposed surface Cu atoms on the {110} facet. A large series of 1,4‐disubstituted 1,2,3‐triazoles have been synthesized in excellent yields with high regioselectivity under green conditions by using these rhombic dodecahedral Cu2O catalysts, including the synthesis of rufinamide, an antiepileptic drug, demonstrating the potential of these nanocrystals as promising heterogeneous catalysts for other important coupling reactions.  相似文献   

6.
In this study, a new series of Cu(2)O nanocrystals with systematic shape evolution from cubic to face-raised cubic, edge- and corner-truncated octahedral, all-corner-truncated rhombic dodecahedral, {100}-truncated rhombic dodecahedral, and rhombic dodecahedral structures have been synthesized. The average sizes for the cubes, edge- and corner-truncated octahedra, {100}-truncated rhombic dodecahedra, and rhombic dodecahedra are approximately 200, 140, 270, and 290 nm, respectively. An aqueous mixture of CuCl(2), sodium dodecyl sulfate, NaOH, and NH(2)OH·HCl was prepared to produce these nanocrystals at room temperature. Simple adjustment of the amounts of NH(2)OH·HCl introduced enables this particle shape evolution. These novel particle morphologies have been carefully analyzed by transmission electron microscopy (TEM). The solution color changes quickly from blue to green, yellow, and then orange within 1 min of reaction in the formation of nanocubes, while such color change takes 10-20 min in the growth of rhombic dodecahedra. TEM examination confirmed the rapid production of nanocubes and a substantially slower growth rate for the rhombic dodecahedra. The rhombic dodecahedra exposing only the {110} facets exhibit an exceptionally good photocatalytic activity toward the fast and complete photodegradation of methyl orange due to a high number density of surface copper atoms, demonstrating the importance of their successful preparation. They may serve as effective and cheap catalysts for other photocatalytic reactions and organic coupling reactions.  相似文献   

7.
This work confirms the presence of a large facet‐dependent photocatalytic activity of Cu2O crystals through sparse deposition of gold particles on Cu2O cubes, octahedra, and rhombic dodecahedra. Au‐decorated Cu2O rhombic dodecahedra and octahedra showed greatly enhanced photodegradation rates of methyl orange resulting from a better separation of the photogenerated electrons and holes, with the rhombic dodecahedra giving the best efficiency. Au–Cu2O core–shell rhombic dodecahedra also displayed a better photocatalytic activity than pristine rhombic dodecahedra. However, Au‐deposited Cu2O cubes, pristine cubes, and Au‐deposited small nanocubes bound by entirely {100} facets are all photocatalytically inactive. X‐ray photoelectron spectra (XPS) showed identical copper peak positions for these Au‐decorated crystals. Remarkably, electron paramagnetic resonance (EPR) measurements indicated a higher production of hydroxyl radicals for the photoirradiated Cu2O rhombic dodecahedra than for the octahedra, but no radicals were produced from photoirradiated Cu2O cubes. The Cu2O {100} face may present a high energy barrier through its large band edge bending and/or electrostatic repulsion, preventing charge carriers from reaching to this surface. The conventional photocatalysis model fails in this case. The facet‐dependent photocatalytic differences should be observable in other semiconductor systems whenever a photoinduced charge‐transfer process occurs across an interface.  相似文献   

8.
The morphological evolution of uniform Cu(2)O nanocrystals with different morphologies in a weak acetic acid solution (pH = 3.5) has been studied for cubic, octahedral, rhombic dodecahedral, {100} truncated octahedral, and {110} truncated octahedral nanocrystals. Cu(2)O nanocrystals undergo oxidative dissolution in weak acid solution, but their morphological changes depend on the exposed crystal planes. We found that the stability of Cu(2)O crystal planes in weak acid solution follows the order of {100} ? {111} > {110} and determines how the morphology of Cu(2)O nanocrystals evolves. The stable {100} crystal planes remain, and new {100} facets form at the expense of the less stable {111} and {110} crystal planes on the surface of Cu(2)O nanocrystals. Density functional theory calculations reveal that the Cu-O bond on Cu(2)O(100) surface has the shortest bond length. These results clearly exemplify that the morphology of inorganic crystals will evolve with the change of local chemical environment, shedding light on fundamentally understanding the morphological evolution of natural minerals and providing novel insights into the geomimetic synthesis of inorganic materials in the laboratory.  相似文献   

9.
We report the development of a facile method for the synthesis of Ag(2)O crystals with systematic shape evolution from cubic to edge- and corner-truncated cubic, rhombicuboctahedral, edge- and corner-truncated octahedral, octahedral, and hexapod structures by mixing AgNO(3), NH(4)NO(3), and NaOH at molar ratios of 1:2:11.8. A sufficient volume of NaOH solution was first added to a mixture of AgNO(3) and NH(4)NO(3) solution to promote the formation of Ag(NH(3))(2)(+) complex ions and the growth of Ag(2)O nanocrystals with good morphological control. The crystals are mostly submicrometer-sized. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy characterization has been performed to determine the crystalline surface facets. A band gap value of approximately 1.45 eV has been found for the octahedral Ag(2)O crystals. By changing the molar ratios of AgNO(3)/NH(4)NO(3)/NaOH to 1:2:41.8, corner-depressed rhombicuboctahedra and elongated hexapods were obtained as a result of enhanced crystal growth along the [100] directions. Smaller nanocubes with average sizes of approximately 200 and 300 nm and octapods can also be prepared by adjusting the reagent molar ratios and their added volumes. Both the octahedra and hexapods with largely silver atom-terminated {111} surface facets responded repulsively and moved to the surface of the solution when dispersing in a solution of positively charged methylene blue, but can be suspended in a negatively charged methyl orange solution. The cubes and octapods, bounded by the {100} faces, were insensitive to the molecular charges in solution. The dramatic facet-dependent surface properties of Ag(2)O crystals have been demonstrated.  相似文献   

10.
梁长海  刘倩  李闯  陈霄 《分子催化》2013,27(4):316-322
采用化学还原法合成Pd纳米立方体,并将其作为晶种,进一步合成大尺寸的纳米Pd立方体以及具有不同{100}和{111}晶面比例的纳米Pd多面体.将形貌和尺寸可控的纳米Pd溶胶应用于1,4-丁炔二醇催化加氢的反应中,反应结果表明,纳米Pd的催化性能取决于其尺寸和形貌.{111}晶面的催化活性高于{100}晶面,PVP稳定的Pd胶体对1,4-丁烯二醇均具有较高选择性,具有适当{100}和{111}晶面比例的纳米Pd多面体对1,4-丁烯二醇的选择性可达96%.  相似文献   

11.
This article describes a systematic study of the galvanic replacement reaction between PtCl(6)(2-) ions and Pd nanocrystals with different shapes, including cubes, cuboctahedrons, and octahedrons. It was found that Br(-) ions played an important role in initiating, facilitating, and directing the replacement reaction. The presence of Br(-) ions led to the selective initiation of galvanic replacement from the {100} facets of Pd nanocrystals, likely due to the preferential adsorption of Br(-) ions on this crystallographic plane. The site-selective galvanic replacement resulted in the formation of Pd-Pt bimetallic nanocrystals with a concave structure owing to simultaneous dissolution of Pd atoms from the {100} facets and deposition of the resultant Pt atoms on the {111} facets. The Pd-Pt concave nanocubes with different weight percentages of Pt at 3.4, 10.4, 19.9, and 34.4 were also evaluated as electrocatalysts for the oxygen reduction reaction (ORR). Significantly, the sample with a 3.4 wt.% of Pt exhibited the largest specific electrochemical surface area and was found to be four times as active as the commercial Pt/C catalyst for the ORR in terms of equivalent Pt mass.  相似文献   

12.
By using octahedral gold nanocrystals with sizes of approximately 50 nm as the structure-directing cores for the overgrowth of Pd shells, Au-Pd core-shell heterostructures with systematic shape evolution can be directly synthesized. Core-shell octahedra, truncated octahedra, cuboctahedra, truncated cubes, and concave cubes were produced by progressively decreasing the amount of the gold nanocrystal solution introduced into the reaction mixture containing cetyltrimethylammonium bromide (CTAB), H(2)PdCl(4), and ascorbic acid. The core-shell structure and composition of these nanocrystals has been confirmed. Only the concave cubes are bounded by a variety of high-index facets. This may be a manifestation of the release of lattice strain with their thick shells at the corners. Formation of the [CTA](2)[PdBr(4)] complex species has been identified spectroscopically. Time-dependent UV-vis absorption spectra showed faster Pd source consumption rates in the growth of truncated cubes and concave cubes, while a much slower reduction rate was observed in the generation of octahedra. The concave cubes and octahedra were used as catalysts for a Suzuki coupling reaction. They can all serve as effective and recyclable catalysts, but the concave cubes gave higher product yields with a shorter reaction time attributed to their high-index surface facets. The concave cubes can also catalyze a wide range of Suzuki coupling reactions using aryl iodides and arylboronic acids with electron-donating and -withdrawing substituents.  相似文献   

13.
By breaking intrinsic Si (100) and (111) wafers to expose sharp {111} and {112} facets, electrical conductivity measurements on single and different silicon crystal faces were performed through contacts with two tungsten probes. While Si {100} and {110} faces are barely conductive at low applied voltages, as expected, the Si {112} surface is highly conductive and Si {111} surface also shows good conductivity. Asymmetrical I V curves have been recorded for the {111}/{112}, {111}/{110}, and {112}/{110} facet combinations because of different degrees of conduction band bending at these crystal surfaces presenting different barrier heights to current flow. In particular, the {111}/{110} and {112}/{110} facet combinations give I V curves resembling those of p–n junctions, suggesting a novel field effect transistor design is possible capitalizing on the pronounced facet‐dependent electrical conductivity properties of silicon.  相似文献   

14.
We report the shape and size control of polyhedral gold nanocrystals by a modified polyol process. The rapid reduction of gold precursors in refluxing 1,5-pentanediol has successfully provided a series of gold nanocrystals in the shape of octahedra, truncated octahedra, cuboctahedra, cubes, and higher polygons by incremental changes of silver nitrate concentration. All nanocrystals were obtained quantitatively and were uniform in shape and size in the range of approximately 100 nm. Smaller octahedra and cubes were also prepared by using large amounts of PVP. Silver species generated from AgNO3 seemed to determine the final nanocrystal morphology by the selective growth of {111} and/or the restriction of {100}. The shape evolution of the particles was addressed by quenching the reactions at different time intervals. The approximately 60 nm seeds were generated rapidly and grown slowly with simultaneous edge sharpening. Aging the reaction mixture focused the size and shape of the nanocrystals by Ostwald ripening. We believe that our selective growth conditions can be applied to other shapes and compositions of face-centered cubic metals.  相似文献   

15.
为理解Pt 纳米晶(NCs)表面上吸附与反应的结构效应, 本文利用电化学衰减全反射-表面增强红外吸收光谱(ATR-SEIRAS)初步研究了{100}优先取向的Pt 纳米晶表面CO电吸附和电氧化. 合成并清洗过的Pt 纳米晶在硫酸溶液中的循环伏安图出现了四对氧化还原峰, 其中位于0.26和0.36 V的峰分别对应于短程有序和长程有序Pt{100}上的氢吸脱附. 利用Bi、Ge 不可逆吸附法估算出Pt{100}和Pt{111}纳米晶筹分别占34% 和17%. 在原位红外光谱研究中, 首次分辨出线性吸附的CO (COL)物种在Pt 纳米晶的三个基础小晶面上的振动谱峰. 动电位光谱分析结果表明Pt{110}上吸附的COL优先电氧化, 其次{111}上的COL发生氧化, 而Pt{100}上COL氧化过电位最高.  相似文献   

16.
Concave trisoctahedral (TOH) Pd@Au core-shell nanocrystals bound by {331} facets have been synthesized for the first time. Pd nanocubes and cetyltrimethylammonium chloride were used as the structure-directing cores and capping agents, respectively. Their optical and electrocatalytic properties were investigated.  相似文献   

17.
本文基于课题组前期工作,选用适当的金属前驱物、还原剂、稳定剂和保护剂,通过调控氧化刻蚀和反应动力学等,成功合成了形貌和尺寸均不相同的Pd纳米晶.经过认真的纳米粒子清洗和电极修饰组装,考察了它们在电催化甲酸氧化反应中的形貌与性能的关系.研究结果表明,Pd纳米晶样品的最大电流密度以纳米八面体(nanooctahedra)、纳米线(nanowires)、纳米立方体(nanocubes)、纳米瓜子(nanotapers)、凹面纳米立方体(concave nanocubes)的顺序递增,催化甲酸氧化反应的起始氧化电位均小于0.2V.研究结果印证了Pd纳米晶催化甲酸氧化反应的催化性能在尺寸效应上主要受活性表面积的影响,扣除表面积效应后的催化性能与其尺寸没有明确关系.该系列Pd纳米晶的催化性能主要取决于其表面结构,得出Pd纳米晶催化甲酸氧化反应遵循{111}晶面〈{100}晶面〈高指数晶面的性能活性顺序.综合最大电流密度和最小操作电位因素发现,Pd凹面纳米立方体和Pd纳米瓜子具有相对较好的商用价值.  相似文献   

18.
The selective oxidation of propylene with O2 to propylene oxide and acrolein is of great interest and importance. We report the crystal‐plane‐controlled selectivity of uniform capping‐ligand‐free Cu2O octahedra, cubes, and rhombic dodecahedra in catalyzing propylene oxidation with O2: Cu2O octahedra exposing {111} crystal planes are most selective for acrolein; Cu2O cubes exposing {100} crystal planes are most selective for CO2; Cu2O rhombic dodecahedra exposing {110} crystal planes are most selective for propylene oxide. One‐coordinated Cu on Cu2O(111), three‐coordinated O on Cu2O(110), and two‐coordinated O on Cu2O(100) were identified as the catalytically active sites for the production of acrolein, propylene oxide, and CO2, respectively. These results reveal that crystal‐plane engineering of oxide catalysts could be a useful strategy for developing selective catalysts and for gaining fundamental understanding of complex heterogeneous catalytic reactions at the molecular level.  相似文献   

19.
The development of high-performance nanocatalysts relies essentially on the generation of stable and active surface sites at the atomic scale through synthetic control of the size, shape, and chemical composition of nanoscale metals and metal oxides. One promising route is to induce the exposure of catalytically active high-index facets of nanostructures through shape-controlled syntheses. We have designed and prepared two types of Pd nanoshells that are enclosed by high-index {730} and {221} facets through heteroepitaxial growth on high-index-faceted Au nanocrystals. The turnover numbers per surface atom of the high-index-faceted Pd nanoshells have been found to be 3-7 times those of Pd and Au-Pd core-shell nanocubes that possess only {100} facets in catalyzing the Suzuki coupling reaction. These results open up a potential for the development of inexpensive and highly active metal nanocatalysts.  相似文献   

20.
We report the shape evolution process of Cu(2)O nanocrystals upon slow oxidation of Cu under ambient conditions, yielding novel hexagonal and triangular platelike morphologies. The shape of the obtained nanocrystals evolves from hexagonal to triangular to octahedral; the growth patterns are governed by kinetically and thermodynamically controlled growth. Preferential adsorption of I(-) on {111} planes of Cu(2)O nanoparticles induced the selective crystal growth of metastable platelike structures with {111} faces as the basal planes. On aging, the growth process appeared to shift into the thermodynamic regime and the thermodynamically stable octahedral shape is obtained. The possible growth mechanisms were investigated by varying the synthetic conditions. The band gap of Cu(2)O nanooctahedrons was determined by the classical Tauc approach to be 2.24 eV, which is blue shifted with respect to the bulk Cu(2)O value (2.17 eV). Results suggest that the slow oxidation process and use of crystallographic selective surfactants are essential for the appearance of anisotropic metastable shapes. In general, surface energy control by surfactant molecules might provide a convenient channel for tailoring nanocrystal shapes of metal oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号