首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photolysis of aqueous NO3(-) with lambda > or = 195 nm is known to induce the formation of NO2(-) and O2 as the only stable products. The mechanism of NO3- photolysis, however, is complex, and there is still uncertainty about the primary photoprocesses and subsequent reactions. This is, in part, due to photoisomerization of NO3(-) to ONOO(-) at lambda < 280 nm, followed by the formation of *OH and *NO2 through the decomposition of ONOOH (pKa = 6.5-6.8). Because of incomplete information concerning the mechanism of peroxynitrite (ONOOH/ONOO(-)) decomposition, previous studies were unable to account for all observations. In the present study aqueous nitrate solutions were photolyzed by monochromatic light in the range of 205-300 nm. It is shown that the main primary processes at this wavelength range are NO3(-) hv-->*NO2 + O*(-) (reaction 1) and NO3(-) hv--> ONOO(-) (reaction 2). Based on recent knowledge on the mechanisms of peroxynitrite decomposition and its reactions with reactive nitrogen and oxygen species, we determined Phi(1) and Phi(2) using different experimental approaches. Both quantum yields increase with decreasing the excitation wavelength, approaching Phi(1) = 0.13 and Phi(2) = 0.28 at 205 nm. It is also shown that the yield of nitrite increases with decreasing the excitation wavelength. The implications of these results on UV disinfection of drinking water are discussed.  相似文献   

2.
We designed and synthesized a photocontrollable peroxynitrite (ONOO(-)) generator, P-NAP, which has N-methyl-N-nitrosoaminophenol structure with four methyl groups introduced onto the benzene ring to block reaction of the photodecomposition product with ONOO(-) and to lower the semiquinoneimine's redox potential. The semiquinoneimine intermediate generated by photoinduced release of nitric oxide (NO) reduces dissolved molecular oxygen to generate superoxide radical anion (O(2)(?-)), which reacts with NO to afford ONOO(-) under diffusion control (k = 6.7 × 10(9) M(-1) s(-1)). NO release from P-NAP under UV-A (330-380 nm) irradiation was confirmed by ESR spin trapping. Tyrosine nitration, characteristic of ONOO(-), was demonstrated by HPLC analysis of a photoirradiated aqueous solution of P-NAP and N-acetyl-l-tyrosine ethyl ester. ONOO(-) formation was confirmed with a ONOO(-)-specific fluorogenic probe, HKGreen-3, and compared with that from 3-(4-morpholinyl)sydnonimine hydrochloride (SIN-1), which is the most widely used ONOO(-) generator at present. The photoreaction of P-NAP was influenced by superoxide dismutase, indicating that generation of O(2)(?-) occurs before ONOO(-) formation. The quantum yield for formation of duroquinone, the main P-NAP photodecomposition product, was measured as 0.86 ± 0.07 at 334 nm with a potassium ferrioxalate actinometer. Generation of ONOO(-) from P-NAP in HCT-116 cells upon photoirradiation was successfully imaged with HKGreen-3A. This is the first example of a photocontrollable ONOO(-) donor applicable to cultured cells.  相似文献   

3.
Peroxynitrite/peroxynitrous acid (ONOO(-)/ONOOH; pK(a(ONOOH)) =6.8) is implicated in multiple chronic inflammatory and neurodegenerative diseases. Both mammalian B(12)-dependent enzymes are inactivated under oxidative stress conditions. We report studies on the kinetics of the reaction between peroxynitrite/peroxynitrous acid and a major intracellular vitamin B(12) form, cob(II)alamin (Cbl(II)), using stopped-flow spectroscopy. The pH dependence of the reaction is consistent with peroxynitrous acid reacting directly with Cbl(II) to give cob(III)alamin (Cbl(III)) and (.)NO(2) , followed by a subsequent rapid reaction between (.)NO(2) and a second molecule of Cbl(II) to primarily form nitrocobalamin. In support of this mechanism, a Cbl(II)/ONOO(H) stoichiometry of 2:1 is observed at pH 7.35 and 12.0. The final major Cbl(III) product observed (nitrocobalamin or hydroxycobalamin) depends on the solution pH. Analysis of the reaction products in the presence of tyrosine-a well-established (.)NO(2) scavenger-reveals that Cbl(II) reacts with (.)NO(2) at least an order of magnitude faster than tyrosine itself. Given that protein-bound Cbl is accessible to small molecules, it is likely that enzyme-bound and free intracellular Cbl(II) molecules are rapidly oxidized to inactive Cbl(III) upon exposure to peroxynitrite or (.)NO(2).  相似文献   

4.
Peroxynitrite decay in weakly alkaline media occurs by two concurrent sets of pathways which are distinguished by their reaction products. One set leads to net isomerization to NO(3)(-) and the other set to net decomposition to O(2) plus NO(2)(-). At sufficiently high peroxynitrite concentrations, the decay half-time becomes concentration-independent and approaches a limiting value predicted by a mechanism in which reaction is initiated by unimolecular homolysis of the peroxo O-O bond, i.e., the following reaction: ONOOH --> (*)OH + (*)NO(2). This dynamical behavior excludes alternative postulated mechanisms that ascribe decomposition to bond rearrangement within bimolecular adducts. Nitrate and nitrite product distributions measured at very low peroxynitrite concentrations also correspond to predictions of the homolysis model, contrary to a recent report from another laboratory. Additionally, (1) the rate constant for the reaction ONOO(-) --> (*)NO + (*)O(2)(-), which is critical to the kinetic model, has been confirmed, (2) the apparent volume of activation for ONOOH decay (DeltaV() = 9.7 +/- 1.4 cm(3)/mol) has been shown to be independent of the concentration of added nitrite and identical to most other reported values, and (3) complex patterns of inhibition of O(2) formation by radical scavengers, which are impossible to rationalize by alternative proposed reaction schemes, are shown to be quantitatively in accord with the homolysis model. These observations resolve major disputes over experimental data existing in the literature; despite extensive investigation of these reactions, no verifiable experimental evidence has been advanced that contradicts the homolysis model.  相似文献   

5.
In this work we report on the design, microfabrication and analytical performances of a new electrochemical sensor array (ESA) which allows for the first time the simultaneous amperometric detection of nitric oxide (NO) and peroxynitrite (ONOO(-)), two biologically relevant molecules. The on-chip device includes individually addressable sets of gold ultramicroelectrodes (UMEs) of 50 μm diameter, Ag/AgCl reference electrode and gold counter electrode. The electrodes are separated into two groups; each has one reference electrode, one counter electrode and 110 UMEs specifically tailored to detect a specific analyte. The ESA is incorporated on a custom interface with a cell culture well and spring contact pins that can be easily interconnected to an external multichannel potentiostat. Each UME of the network dedicated to the detection of NO is electrochemically modified by electrodepositing thin layers of poly(eugenol) and poly(phenol). The detection of NO is performed amperometrically at 0.8 V vs. Ag/AgCl in phosphate buffer solution (PBS, pH = 7.4) and other buffers adapted to biological cell culture, using a NO-donor. The network of UMEs dedicated to the detection of ONOO(-) is used without further chemical modification of the surface and the uncoated gold electrodes operate at -0.1 V vs. Ag/AgCl to detect the reduction of ONOOH in PBS. The selectivity issue of both sensors against major biologically relevant interfering analytes is examined. Simultaneous detection of NO and ONOO(-) in PBS is also achieved.  相似文献   

6.
The reaction of peroxynitrite with violet-colored MnO4- leads to the formation of green MnO42-. The rate constant for the reaction at pH 11.7, 5.5 mM ionic strength, and 25 degrees C, 0.020 +/- 0.001 s(-1), is independent of the MnO4- concentration; homolysis of ONOO- to NO* and O2*- is the rate-determining step. Both NO* and O2*- react with MnO4- with rate constants of (3.5 +/- 0.7) x 10(6) M(-1)s(-1) and (5.7 +/- 0.9) x 10(5) M(-1)s(-1), respectively. The activation volume and activation energy for breaking the N-O bond are 12.6 +/- 0.8 cm(3)mol(-1) and 102 +/- 2 kJ mol(-1), respectively. In combination with the known standard Gibbs energies of formation of NO* and O2*-, the rate of the reaction of NO* and O2*-, and the pKa of ONOOH, we find a standard Gibbs energy of formation of ONOO- of +68 +/- 1 kJ mol(-1), and of ONOOH of +31 +/- 1 kJ mol(-1).  相似文献   

7.
Inflamed tissues are often characterised by the production of *NO and O(2)(-) radicals, which are known to react at an extremely fast rate to produce peroxynitrite (ONOO(-)). This highly oxidising entity reacts with protein-bound tyrosine to give 3-nitrotyrosine, which is considered a biochemical marker of peroxynitrite-induced damage. Lacidipine is a calcium antagonist indicated for the treatment of mild to moderate hypertension. In the present work, electrospray mass spectrometry with and without liquid chromatography was used to evaluate the capability of lacidipine and two other related molecules as ONOO(-) scavengers. This capability is compared with that associated with a number of commercial polyphenols described in the literature as efficient scavengers of this cytotoxic agent. The use of mass spectrometry provided rapid quantitative assessment of both the nitration and its reduction, and showed that lacidipine possesses a reasonable capability for reducing in vitro nitration of superoxide dismutase.  相似文献   

8.
Cellular dinitrosyl iron complexes (DNICs) have long been considered NO carriers. Although other physiological roles of DNICs have been postulated, their chemical functionality outside of NO transfer has not been demonstrated thus far. Here we report the unprecedented dioxygen reactivity of a N-bound {Fe(NO)(2)}(10) DNIC, [Fe(TMEDA)(NO)(2)] (1). In the presence of O(2), 1 becomes a nitrating agent that converts 2,4,-di-tert-butylphenol to 2,4-di-tert-butyl-6-nitrophenol via formation of a putative iron-peroxynitrite [Fe(TMEDA)(NO)(ONOO)] (2) that is stable below -80 °C. Iron K-edge X-ray absorption spectroscopy on 2 supports a five-coordinated metal center with a bound peroxynitrite in a cyclic bidentate fashion. The peroxynitrite ligand of 2 readily decays at increased temperature or under illumination. These results suggest that DNICs could have multiple physiological or deleterious roles, including that of cellular nitrating agents.  相似文献   

9.
A method for the separation and direct detection of peroxynitrite (ONOO(-)) and two of its degradation products, nitrite (NO(2)(-)) and nitrate (NO(3)(-)), using capillary electrophoresis with ultraviolet detection is described. The separation parameters were optimized and included electrokinetic injection, a run buffer consisting of 25 mM K(2)HPO(4) 7.5 mM DTAB, pH 12, and a field strength of -323 V/cm. A diode array UV detector was employed in these studies as it allowed the determination of all three species simultaneously. Nitrate and nitrite provided the maximum response at 214 nm while peroxynitrite generated the best response at 302 nm. All three species could be detected at 214 nm, while simultaneous detection at 214 and 302 nm positively identified each peak.  相似文献   

10.
Peroxynitric acid/peroxynitrate (PNA) rivals peroxynitrous acid/peroxynitrite (PNI) in importance as a reactive oxygen species. These species possess similar two-electron oxidative behavior. On the other hand, stark differences exist in the stability of these molecules as a function of pH and in the presence of CO(2), and also in the types of bond homolysis reactions that PNA and PNI may undergo. Using CBS-QB3 theory, we examine these similarities and differences. The activation barriers for two-electron oxidation of NH(3), H(2)S, and H(2)C=CH(2) by PNA and PNI are found to be generally similar. The O-O BDE of O(2)NOOCO(2-) is predicted to be 26 kcal/mol greater than that of ONOOCO(2-). This accounts for the insensitivity of PNA to the presence of CO(2). Likewise, the O-O BDE of O(2)NOOH is predicted to be 19 kcal/mol greater than that of ONOOH, in excellent agreement with experiment. The fundamental principle underlying the large differences in O-O BDEs between PNA and PNI species is that the NO(2) that is formed from PNI can relax from the (2)B(2) excited state to the (2)A(1) ground state, whereas no such comparable state change occurs with NO(3) from PNA. Decomposition of the anions O(x)NOO(-) is more complex, with the energetics influenced by solvation. ONOO(-) can homolyze to yield NO/O(2-); however, this pathway represents a thermodynamic "dead end" since the radical pairs generated by homolysis should mostly revert to starting material. However, decomposition of O(2)NOO(-) yields the stable products NO(2-)/(3)O(2), a couple that is more stable than starting material. This may occur either by initial formation of NO(2)/O(2-) or NO(2-)/(1)O(2), with the latter intermediates thermodynamically favored both in the gas phase and in solution. Given the extremely fast back-reaction of the homolysis products, heterolysis probably dominates the observed O(2)NOO(-) decomposition kinetics. This is in agreement with the first of two "kinetically indistinguishable" mechanistic possibilities proposed for O(2)NOO(-) decomposition (Goldstein, S.; Czapski, G.; Lind, J.; Merényi, G. Inorg. Chem. 1998, 37, 3943-3947).  相似文献   

11.
Jensen MP  Riley DP 《Inorganic chemistry》2002,41(18):4788-4797
Peroxynitrite (ONOO(-)/ONOOH), a putative cytotoxin formed by combination of nitric oxide (NO.) and superoxide (HO(2)(.)) radicals, is decomposed catalytically by micromolar concentrations of water-soluble Fe(III) porphyrin complexes, including 5,10,15,20-tetrakis(2',4',6'-trimethyl-3,5-disulfonatophenyl)porphyrinatoferrate(7-), Fe(TMPS); 5,10,15,20-tetrakis(4'-sulfonatophenyl)porphyrinatoiron(3-), Fe(TPPS); and 5,10,15,20-tetrakis(N-methyl-4'-pyridyl) porphyrinatoiron(5+), Fe(TMPyP). Spectroscopic (UV-visible), kinetic (stopped-flow), and product (ion chromatography) studies reveal that the catalyzed reaction is a net isomerization of peroxynitrite to nitrate (NO(3)(-)). One-electron catalyst oxidation forms an oxoFe(IV) intermediate and nitrogen dioxide, and recombination of these species is proposed to regenerate peroxynitrite or to yield nitrate. Michaelis-Menten kinetics are maintained accordingly over an initial peroxynitrite concentration range of 40-610 microM at 5.0 microM catalyst concentrations, with K(m) in the range 370-620 microM and limiting turnover rates in the range of 200-600 s(-1). Control experiments indicate that nitrite is not a kinetically competent reductant toward the oxidized intermediates, thus ruling out a significant role for NO(2)(.) hydrolysis in catalyst turnover. However, ascorbic acid can intercept the catalytic intermediates, thus directing product distributions toward nitrite and accelerating catalysis to the oxidation limit. Additional mechanistic details are proposed on the basis of these and various other kinetic observations, specifically including rate effects of catalyst and peroxynitrite concentrations, solution pH, and isotopic composition.  相似文献   

12.
Photocontrollable ONOO(-) generation from a nitrobenzene derivative was demonstrated. The designed compound released NO in response to photoirradiation, and the resulting semiquinone reduced molecular oxygen to generate O(2)˙(-); reaction of the two generated ONOO(-), as confirmed with an ONOO(-) fluorescent probe, HKGreen-3.  相似文献   

13.
The kinetics of decomposition of peroxynitrous acid (ONOOH) was investigated in the presence of 0.1-0.75 M HClO(4) and at a constant ionic strength. The decay rate of ONOOH decreased in the presence of H(2)O(2), approaching a limiting value well below 75 mM H(2)O(2). It also decreased in the presence of relatively low [HNO(2)] but did not approach a lower limiting value, since ONOOH reacts directly with HNO(2). The latter reaction corresponds to a HNO(2)- and H(+)-catalyzed isomerization of ONOOH to nitrate, and its third-order rate constant was determined to be 520 +/- 30 M(-)(2) s(-)(1). The mechanism of formation of O(2)NOOH from ONOOH in the presence of H(2)O(2) was also scrutinized. The results demonstrated that in the presence of 0.1-0.75 M HClO(4) and 75 mM H(2)O(2) the formation of O(2)NOOH is insignificant. The most important finding in this work is the reversibility of the reaction ONOOH + H(2)O right harpoon over left harpoon HNO(2) + H(2)O(2), and its equilibrium constant was determined to be (7.5 +/- 0.4) x 10(-)(4) M. Using this value, the Gibbs' energy of formation of ONOOH was calculated to be 7.1 +/- 0.2 kcal/mol. This figure is in good agreement with the value determined previously from kinetic data using parameters for radicals formed during homolysis of peroxynitrite.  相似文献   

14.
Wang Z  Teng X  Lu C 《The Analyst》2012,137(8):1876-1881
In this study, Mg-Al-carbonate layered double hydroxides (denoted as Mg-Al-CO(3) LDHs) were found to catalyze the chemiluminescence (CL) emission from peroxynitrous acid (ONOOH). The enhanced CL signals resulted from the concentration of peroxynitrite (ONOO(-)) onto the LDHs surface by electrostatic attraction, meaning that ONOO(-) can interact with the intercalated carbonate easily and effectively. Moreover, ascorbic acid can react with ONOO(-), or its decomposition products (e.g., ˙OH and ˙NO(2)), resulting in a decrease in the CL intensity from the Mg-Al-CO(3) LDHs-catalyzed ONOOH reaction. Based on these findings, a sensitive, selective and rapid CL method was developed for the determination of ascorbic acid using Mg-Al-CO(3) LDHs-catalyzed ONOOH as a novel CL system. The CL intensity was proportional to the concentration of ascorbic acid in the range from 5.0 to 5000 nM. The detection limit (S/N = 3) was 0.5 nM and the relative standard deviation (RSD) for nine repeated measurements of 0.1 μM ascorbic acid was 2.6%. This method has been successfully applied to determine ascorbic acid in commercial liquid fruit juices with recoveries of 97-107%. This work is not only of importance for a better understanding of the unique properties of LDHs-catalyzed CL but also of great potential for extensive applications in many fields, such as luminescence devices, bioanalysis, and labeling probes.  相似文献   

15.
We have examined the photochemical reactions occurring after irradiation at 200 nm of the aqueous nitrate ion, NO3(-)(aq). Using femtosecond transient absorption spectroscopy over the range 194-388 nm, we have characterized the formation and subsequent relaxation of the primary photoproducts of nitrate photolysis. The dominant photoproduct is the cis-isomer of peroxynitrite, which accounts for 48% of the excited state molecules initially produced. A slightly smaller fraction, 44%, of the excited molecules return to the electronic ground state of NO3(-) and relax to the vibrational ground state in 2 ps. The remaining 8% of the molecules initially excited react via the *NO + *O2(-) or the NO- + O2 dissociation channels. Formation of NO2(-) and *NO2 is not observed, suggesting that the previous observations of these species in steady-state photolysis are caused by reactions occurring on a longer time scale.  相似文献   

16.
Reaction of the trivacant lacunary complex, alpha-Na(12)[As(2)W(15)O(56)], with an aqueous solution of Fe(NO(3))(3).9H(2)O yields the sandwich-type polyoxometalate, alphabetabetaalpha-Na(12)(Fe(III)OH(2))(2)Fe(III)(2)(As(2)W(15)O(56))(2) (Na1). The structure of this complex, determined by single-crystal X-ray crystallography (a = 13.434(1) A, b = 13.763(1) A, c = 22.999(2) A, alpha = 90.246(2) degrees, beta = 102.887(2) degrees, gamma = 116.972(1) degrees, triclinic, Ponemacr;, R1 = 5.5%, based on 25342 independent reflections), consists of an Fe(III)(4) unit sandwiched between two trivacant alpha-As(2)W(15)O(56)(12)(-) moieties. UV-vis, infrared, cyclic voltammetry, and elemental analysis data are all consistent with the structure determined from X-ray analysis. Magnetization studies confirm that the four Fe(III) centers are antiferromagnetically coupled. A cyclic voltammogram of Na1 reveals that a three-wave W(VI) system replaces the two-wave W(VI) system found in the precursor alpha-As(2)W(15)O(56)(12)(-) complex. The observed modifications in the CV patterns of Na1 and alpha-As(2)W(15)O(56)(12)(-) are most likely due to subsequent changes in the acid-base properties of two reduced POMs that occur as a result of Fe(III) incorporation. Na1 is shown to be more efficient than the monosubstituted complex alpha(2)-As(2)(Fe(III)OH(2))W(17)O(61)(7)(-) in the electrocatalytic reduction of dioxygen. This is attributed to cooperativity effects among the adjacent Fe(III) centers in Na1.  相似文献   

17.
The reaction of nitrous acid with hydrogen peroxide leads to nitric acid as the only stable product. In the course of this reaction, peroxynitrous acid (ONOOH) and, in the presence of CO(2), a peroxynitrite-CO(2) adduct (ONOOCO(2)(-)) are intermediately formed. Both intermediates decompose to yield highly oxidizing radicals, which subsequently react with excess hydrogen peroxide to yield peroxynitric acid (O(2)NOOH) as a further intermediate. During these reactions, (15)N chemically induced dynamic nuclear polarization (CIDNP) effects are observed, the analysis of the pH dependency of which allows the elucidation of mechanistic details. The formation and decay of peroxynitric acid via free radicals NO(2)(*) and HOO(*) is demonstrated by the appearance of (15)N CIDNP leading to emission (E) in the (15)N NMR signal of O(2)NOOH during its formation and to enhanced absorption (A) during its decay reaction. Additionally, the (15)N NMR signal of the nitrate ion (NO(3)(-)) appears in emission at pH approximately 4.5. These observations are explained by proposing the intermediate formation of short-lived radical anions O(2)NOOH(*)(-) probably generated by electron transfer between peroxynitric acid and peroxynitrate anion, followed by decomposition of O(2)NOOH(*)(-) into NO(3)(-) and HO(*) and NO(2)(-) and HOO(*) radicals, respectively. The feasibility of such reactions is supported by quantum-chemical calculations at the CBS-Q level of theory including PCM solvation model corrections for aqueous solution. The release of free HO(*) radicals during decomposition of O(2)NOOH is supported by (13)C and (1)H NMR product studies of the reaction of preformed peroxynitric acid with [(13)C(2)]DMSO (to yield the typical "HO(*) products" methanesulfonic acid, methanol, and nitromethane) and by ESR spectroscopic detection of the HO(*) and CH(3)(*) radical adducts to the spin trap compound POBN in the absence and presence of isotopically labeled DMSO, respectively.  相似文献   

18.
The reaction of ebselen and its derivatives (1-7) with peroxynitrite anion (ONOO(-); PN) has been studied in gas phase and in aqueous, dichloromethane, benzene, and cyclohexane solutions using B3LYP/6-311+G(d,p)//B3LYP/6-311G(d,p) and PCM-B3LYP/6-311+G(d,p)//B3LYP/6-311G(d,p) approaches, respectively. It was shown that the reaction of 2 (R=H) with PN proceeds via 2 + PN --> 2-PN --> 2-TS1 (O-O activation) --> 2-O(NO(2)(-)()) --> 2-SeO + NO(2)(-) pathway with a rate-determining barrier of 25.3 (14.8) kcal/mol at the NO(2)(-) dissociation step (numbers presented without parentheses are enthalpies, and those in parentheses are Gibbs free energies). The NO(3)(-) formation process, starting from the complex 2-O(NO(2)(-)()), requires by (7.9) kcal/mol more energy than the NO(2)(-) dissociation process and is unlikely to compete with the latter. Thus, in the gas phase, the peroxynitrite --> nitrate isomerization catalyzed by complex 2 is unlikely to occur. It is shown that the NO(3)(-) formation process is slightly more favorably than the NO(2)(-) dissociation process for complex 4, with a strongest electron-withdrawing ligand R=CF(3). Therefore, complex 4 (as well as complex 6 with R=OH) is predicted to be a good catalyst for peroxynitrite <--> nitrite isomerization in the gas phase. Solvent effects (a) change the rate-determining step of the reaction 2 + PN from NO(2)(-) dissociation in the gas phase to O-O activation, which occurs with barriers of (13.9), (8.4), (8.4), and (8.2) kcal/mol in water, dichloromethane, benzene, and cyclohexane, respectively, and (b) significantly reduce the NO(2)(-) dissociation energy, while only slightly destabilizing the NO(3)(-) formation barrier, and make the peroxynitrite <--> nitrate isomerization process practically impossible, even for complex 4.  相似文献   

19.
The polyanionic water-soluble and non-mu-oxo-dimer-forming iron porphyrin iron(III) 5(4),10(4),15(4),20(4)-tetra-tert-butyl-5(2),5(6),15(2),15(6)-tetrakis[2,2-bis(carboxylato)ethyl]-5,10,15,20-tetraphenylporphyrin, (P(8-))Fe(III) (1), was synthesized as an octasodium salt by applying well-established porphyrin and organic chemistry procedures to bromomethylated precursor porphyrins and characterized by standard techniques such as UV-vis and (1)H NMR spectroscopy. A single pK(a1) value of 9.26 was determined for the deprotonation of coordinated water in (P(8-))Fe(III)(H(2)O)(2) (1-H(2)()O) present in aqueous solution at pH <9. The porphyrin complex reversibly binds NO in aqueous solution to give the mononitrosyl adduct, (P(8-))Fe(II)(NO(+))(L), where L = H(2)O or OH(-). The kinetics of the binding and release of NO was studied as a function of pH, temperature, and pressure by stopped-flow and laser flash photolysis techniques. The diaqua-ligated form of the porphyrin complex binds and releases NO according to a dissociative interchange mechanism based on the positive values of the activation parameters DeltaS() and DeltaV() for the "on" and "off" reactions. The rate constant k(on) = 6.2 x 10(4) M(-1) s(-1) (24 degrees C), determined for NO binding to the monohydroxo-ligated (P(8-))Fe(III)(OH) (1-OH) present in solution at pH >9, is markedly lower than the corresponding value measured for 1-H(2)O at lower pH (k(on) = 8.2 x 10(5) M(-1) s(-1), 24 degrees C, pH 7). The observed decrease in the reactivity is contradictory to that expected for the diaqua- and monohydroxo-ligated forms of the iron(III) complex and is accounted for in terms of a mechanistic changeover observed for 1-H(2)O and 1-OH in their reactions with NO. The mechanistic interpretation offered is further substantiated by the results of water-exchange studies performed on the polyanionic porphyrin complex as a function of pH, temperature, and pressure.  相似文献   

20.
Reactions of peroxynitrite with guanine were investigated using density functional theory (B3LYP) employing 6-31G** and AUG-cc-pVDZ basis sets. Single point energy calculations were performed at the MP2/AUG-cc-pVDZ level. Genuineness of the calculated transition states (TS) was tested by visually examining the vibrational modes corresponding to the imaginary vibrational frequencies and applying the criterion that the TS properly connected the reactant and product complexes (PC). Genuineness of all the calculated TS was further ensured by intrinsic reaction coordinate (IRC) calculations. Effects of aqueous media were investigated by solvating all the species involved in the reactions using the polarizable continuum model (PCM). The calculations reveal that the most stable nitro-product complex involving the anion of 8-nitroguanine and a water molecule i.e. 8NO(2)G(-) + H(2)O can be formed according to one reaction mechanism while there are two possible reaction mechanisms for the formation of the oxo-product complex involving 8-oxoguanine and anion of the NO(2) group i.e. 8OG + NO(2)(-). The calculated relative stabilities of the PC, barrier energies of the reactions and the corresponding enthalpy changes suggest that formation of the complex 8OG + NO(2)(-) would be somewhat preferred over that of the complex 8NO(2)G(-) + H(2)O. The possible biological implications of this result are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号