首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The kinetics of the NCCO + NO(2) reaction was studied by transient infrared laser absorption spectroscopy. The total rate constant of the reaction was measured to be k = (2.1 ± 0.1) × 10(-11) cm(3) molecule(-1) s(-1) at 298 K. Detection of products and consideration of possible secondary chemistry shows that CO(2) + NO + CN is the primary product channel. The rate constants of the NCCO + CH(4) and NCCO + C(2)H(4) reactions were also measured, obtaining upper limits of k (NCCO + CH(4)) ≤ 7.0 × 10(-14) cm(3) molecule(-1) s(-1) and k (NCCO + C(2)H(4)) ≤ 5.0 × 10(-15) cm(3) molecule(-1) s(-1). Ab initio calculations on the singlet and triplet potential energy surfaces at B3LYP/6-311++G**//CCSD(T)/6-311++G** levels of theory show that the most favorable reaction pathway occurs on the singlet surface, leading to CO(2) + NO + CN products, in agreement with experiment.  相似文献   

2.
HNCO is a convenient photolytic source of NCO and NH radicals for laboratory kinetics studies of elementary reaction[1] and plays an important role in the combustion and atmosphere chemistry. It can re- move deleterious compounds rapidly from exhausted ga…  相似文献   

3.
The kinetics of the O + ICN reaction was studied using a relative rate method, with O + C(2)H(2) as the competing reaction. Carbon monoxide products formed in the competing reaction and subsequent secondary chemistry were detected as a function of reagent ICN pressure to obtain total rate constants for the O + ICN reaction. Analysis of the experimental data yields rate constants of k(1) = (3.7 ± 1.0 to 26.2 ± 4.0) × 10(-14) cm(3) molecule(-1) s(-1) over the total pressure range 1.5-9.5 Torr. Product channel NCO + I, the only bimolecular exothermic channel of the reaction, was investigated by detection of N(2)O in the presence of NO and found to be insignificant. An ab initio calculation of the potential energy surface (PES) of the reaction at the CCSD(T)/CEP-31G//DFT-B3LYP/CEP-31G level of theory was also performed. The pathways leading to bimolecular product channels are kinetically unfavorable. Formation and subsequent stabilization of an ICNO adduct species appears to dominate the reaction, in agreement with the experimentally observed pressure dependent rate constants.  相似文献   

4.
CH3(2A′)自由基与臭氧反应机理的量子化学研究   总被引:2,自引:0,他引:2  
用量子化学UMP2方法,在6-311++G**基组水平上研究了CH3(2A′)自由基与臭氧反应机理,全参数优化了反应过程中反应物、中间体、过渡态和产物的几何构型,在UQCISD(T)/6-311++G**水平上计算了它们的能量;并对它们进行了振动分析,以确定中间体和过渡态的真实性;同时应用经典过渡态理论计算了反应的速率常数,并与实验值进行了比较, CH3自由基与臭氧反应速率常数的理论计算结果为: 4.73×10-14 cm3•molecule-1•s-1,与实验报导的结果(k=2.52×10-14 cm3•molecule-1•s-1)很接近,同时发现CH3(2A′)自由基与O3的反应是强放热反应.  相似文献   

5.
The potential energy surface, including the geometries and frequencies of the stationary points, of the reaction HFCO + OH is calculated using the MP2 method with 6-31+G(d,p) basis set, which shows that the direct hydrogen abstraction route is the most dominating channel with respect to addition and substitution channels. For the hydrogen abstraction reaction, the single-point energies are refined at the QCISD(T) method with 6-311++G(2df,2pd) basis set. The calculated standard reaction enthalpy and barrier height are -17.1 and 4.9 kcal mol(-1), respectively, at the QCISD(T)/6-311++G(2df,2pd)//MP2/6-31+G(d,p) level of theory. The reaction rate constants within 250-2500 K are calculated by the improved canonical variational transition state theory (ICVT) with small-curvature tunneling (SCT) correction at the QCISD(T)/6-311++G(2df,2pd)//MP2/6-31+G(d,p) level of theory. The fitted three-parameter formula is k = 2.875 x 10(-13) (T/1000)1.85 exp(-325.0/T) cm(3) molecule(-1) s(-1). The results indicate that the calculated ICVT/SCT rate constant is in agreement with the experimental data, and the tunneling effect in the lower temperature range plays an important role in computing the reaction rate constants.  相似文献   

6.
The mechanism and kinetics for the gas-phase hydrolysis of N(2)O(4) isomers have been investigated at the CCSD(T)/6-311++G(3df,2p)//B3LYP/6-311++G(3df,2p) level of theory in conjunction with statistical rate constant calculations. Calculated results show that the contribution from the commonly assumed redox reaction of sym-N(2)O(4) to the homogeneous gas-phase hydrolysis of NO(2) can be unequivocally ruled out due to the high barrier (37.6 kcal/mol) involved; instead, t-ONONO(2) directly formed by the association of 2NO(2), was found to play the key role in the hydrolysis process. The kinetics for the hydrolysis reaction, 2NO(2) + H(2)O ? HONO + HNO(3) (A) can be quatitatively interpreted by the two step mechanism: 2NO(2) → t-ONONO(2), t-ONONO(2) + H(2)O → HONO + HNO(3). The predicted total forward and reverse rate constants for reaction (A), k(tf) = 5.36 × 10(-50)T(3.95) exp(1825/T) cm(6) molecule(-2) s(-1) and k(tr) = 3.31 × 10(-19)T(2.478) exp(-3199/T) cm(3) molecule(-1) s(-1), respectively, in the temperature range 200-2500 K, are in good agreement with the available experimental data.  相似文献   

7.
The kinetics and mechanism of the reaction of the cyanomidyl radical (HNCN) with the hydroxyl radical (OH) have been investigated by ab initio calculations with rate constants prediction. The single and triplet potential energy surfaces of this reaction have been calculated by single-point calculations at the CCSD(T)/6-311+G(3df,2p) level based on geometries optimized at the B3LYP/6-311+G(3df,2p) and CCSD/6-311++G(d,p) levels. The rate constants for various product channels in the temperature range of 300-3000 K are predicted by variational transition-state and Rice-Ramsperger-Kassel-Marcus (RRKM) theories. The predicted total rate constants can be represented by the expressions ktotal=2.66 x 10(+2)xT-4.50 exp(-239/T) in which T=300-1000 K and 1.38x10(-20)xT2.78 exp(1578/T) cm3 molecule(-1) s(-1) where T=1000-3000 K. The branching ratios of primary channels are predicted: k1 for forming singlet HON(H)CN accounts for 0.32-0.28, and k4 for forming singlet HONCNH accounts for 0.68-0.17 in the temperature range of 300-800 K. k2+k7 for producing H2O+NCN accounts for 0.55-0.99 in the high-temperature range of 800-3000 K. The branching ratios of k3 for producing HCN+HNO, k6 for producing H2N+NCO, k8 for forming 3HN(OH)CN, k9 for producing CNOH+3NH, and k5+k10 for producing NH2+NCO are negligible. The rate constants for key individual product channels are provided in a table for different temperature and pressure conditions.  相似文献   

8.
A theoretical study on the mechanism of the OH reactions with HCN and CH(3)CN, in the presence of O2, is presented. Optimum geometries and frequencies have been computed at BHandHLYP/6-311++G(2d,2p) level of theory for all stationary points. Energy values have been improved by single-point calculations at the above geometries using CCSD(T)/6-311++G(2d,2p). The initial attack of OH to HCN was found to lead only to the formation of the HC(OH)N adduct, while for CH(3)CN similar proportions of CH(2)CN and CH(3)C(OH)N are expected. A four-step mechanism has been proposed to explain the OH regeneration, experimentally observed for OH + CH(3)CN reaction, when carried out in the presence of O2. The mechanism steps are as follows: (1) OH addition to the C atom in the CN group, (2) O2 addition to the N atom, (3) an intramolecular H migration from OH to OO, and (4) OH elimination. This mechanism is in line with the one independently proposed by Wine et al. for HCN. The results obtained here suggest that for the OH + HCN reaction, the OH regeneration might occur even in larger extension than for OH + CH(3)CN reaction. The agreement between the calculated data and the available experimental evidence on the studied reactions seems to validate the mechanism proposed here.  相似文献   

9.
Silicon ions are generated in the Earth's upper atmosphere by hyperthermal collisions of material ablated from incoming meteoroids with atmospheric molecules, and from charge transfer of silicon-bearing neutral species with major atmospheric ions. Reported Si(+) number density vs. height profiles show a sharp decrease below 95 km, which has been commonly attributed to the fast reaction with H(2)O. Here we report rate coefficients and branching ratios of the reactions of Si(+) and SiO(+) with O(3), measured using a flow tube with a laser ablation source and detection of ions by quadrupole mass spectrometry. The results obtained are (2σ uncertainty): k(Si(+) + O(3), 298 K) = (6.5 ± 2.1) × 10(-10) cm(3) molecule(-1) s(-1), with three product channels (branching ratios): SiO(+) + O(2) (0.52 ± 0.24), SiO + O(2)(+) (0.48 ± 0.24), and SiO(2)(+) + O (<0.1); k(SiO(+) + O(3), 298 K) = (6 ± 4) × 10(-10) cm(3) molecule(-1) s(-1), where the major products (branching ratio ≥ 0.95) are SiO(2) + O(2)(+). Reactions (1) and (2) therefore have the unusual ability to neutralise silicon directly, as well as forming molecular ions which can undergo dissociative recombination with electrons. These reactions, along with the recently reported reaction between Si(+) and O(2)((1)Δ(g)), largely explain the disappearance of Si(+) below 95 km in the atmosphere, relative to other major meteoric ions such as Fe(+) and Mg(+). The rate coefficient of the Si(+) + O(2) + He reaction was measured to be k(298 K) = (9.0±1.3) × 10(-30) cm(6) molecule(-2) s(-1), in agreement with previous measurements. The SiO(2)(+) species produced from this reaction, which could be vibrationally excited, is observed to charge transfer at a relatively slow rate with O(2), with a rate constant of k(298 K) = (1.5 ± 1.0) × 10(-13) cm(3) molecule(-1) s(-1).  相似文献   

10.
The mechanisms for the reactions of ClO with ClOClO, ClOOCl, and ClClO(2) have been investigated at the CCSD(T)/6-311+G(3df)//PW91PW91∕6-311+G(3df) level of theory. The rate constants for their low energy channels have been calculated by statistical theory. The results show that the main products for the reaction of ClO with ClOClO are ClOCl + ClOO, which can be produced readily by ClO abstracting the terminal O atom from ClOClO. This process occurs without an intrinsic barrier, with the predicted rate constant: k (ClO + ClOClO) = 7.26 × 10(-10) T(-0.15) × exp (-40/T) cm(3)molecule(-1)s(-1) for 200-1500 K. For the reactions of ClO + ClOOCl and ClClO(2), the lowest abstraction barriers are 7.2 and 7.3 kcal/mol, respectively, suggesting that these two reactions are kinetically unimportant in the Earth's stratosphere as their rate constants are less than 10(-14) cm(3)molecule(-1)s(-1) below 700 K. At T = 200-1500 K, the computed rate constants can be represented by k (ClO+ ClOOCl) = 1.11 × 10 (-14) T (0.87) exp (-3576/T) and k (ClO+ ClClO(2)) = 4.61 × 10(-14) T(0.53) exp (-3588/T) cm(3)molecule(-1)s(-1). For these systems, no experimental or theoretical kinetic data are available for comparison.  相似文献   

11.
The reaction of H radical with C2H5CN has been studied using various quantum chemistry methods. The geometries were optimized at the B3LYP/6‐311+G(d,p) and B3LYP/6‐311++G(2d,2p) levels. The single‐point energies were calculated using G3 and BMC‐CCSD methods based on B3LYP/6‐311++G(2d,2p) geometries. Four mechanisms were investigated, namely, hydrogen abstraction, C‐addition/elimination, N‐addition/elimination and substitution. The kinetics of this reaction were studied using the transition state theory and multichannel Rice‐Ramsperger‐Kassel‐Marcus methodologies over a wide temperature range of 200–3000 K. The calculated results indicate that C‐addition/elimination channel is the most feasible over the whole temperature range. The deactivation of initial adduct C2H5CHN is dominant at lower temperature with bath gas H2 of 760 Torr; whereas C2H5+HCN is the dominant product at higher temperature. Our calculated rate constants are in good agreement with the available experimental data. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

12.
The rate constant of the reaction NCN + O has been directly measured for the first time. According to the revised Fenimore mechanism, which is initiated by the NCN forming reaction CH + N(2)→ NCN + H, this reaction plays a key role for prompt NO(x) formation in flames. NCN radicals and O atoms have been quantitatively generated by the pyrolysis of NCN(3) and N(2)O, respectively. NCN concentration-time profiles have been monitored behind shock waves using narrow-bandwidth laser absorption at a wavelength of λ = 329.1302 nm. Whereas no pressure dependence was discernible at pressures between 709 mbar < p < 1861 mbar, a barely significant temperature dependence corresponding to an activation energy of 5.8 ± 6.0 kJ mol(-1) was found. Overall, at temperatures of 1826 K < T < 2783 K, the rate constant can be expressed as k(NCN + O) = 9.6 × 10(13)× exp(-5.8 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) (±40%). As a requirement for accurate high temperature rate constant measurements, a consistent NCN background mechanism has been derived from pyrolysis experiments of pure NCN(3)/Ar gas mixtures, beforehand. Presumably, the bimolecular secondary reaction NCN + NCN yields CN radicals hence triggering a chain reaction cycle that efficiently removes NCN. A temperature independent value of k(NCN + NCN) = (3.7 ± 1.5) × 10(12) cm(3) mol(-1) s(-1) has been determined from measurements at pressures ranging from 143 mbar to 1884 mbar and temperatures ranging from 966 K to 1900 K. At higher temperatures, the unimolecular decomposition of NCN, NCN + M → C + N(2) + M, prevails. Measurements at temperatures of 2012 K < T < 3248 K and at total pressures of 703 mbar < p < 2204 mbar reveal a unimolecular decomposition close to its low pressure limit. The corresponding rate constants can be expressed as k(NCN + M) = 8.9 × 10(14)× exp(-260 kJ mol(-1)/RT) cm(3) mol(-1) s(-1)(±20%).  相似文献   

13.
The unimolecular decomposition kinetics of the jet-cooled Ni(+)-butanone cluster ion has been monitored over a range of internal energies (16000-18800 cm?1). First-order rate constants are acquired for the precursor ion dissociation into three product channels. The temporal growth of each fragment ion is selectively monitored in a custom instrument and yields similar valued rate constants at a common ion internal energy. The decomposition reaction is proposed to proceed along two parallel reaction coordinates. Each dissociative pathway is rate-limited by the initial Ni(+) oxidative addition into either the C-CH? or C-C?H? σ-bond in the butanone molecule. Ratios of integrated product ion intensities as well as the measured rate constants are used to determine values for each σ-bond activation rate constant. The lowest energy measurement presented in this study occurs when the binary complex ion possesses an internal energy of 16000 cm?1. Under this condition, the Ni(+) assisted decomposition of the butanone molecule is rate limited by k(act)(C-C?H?) = (0.92 ± 0.08) × 10? s?1 and k(act)(C-CH?) = (0.37 ± 0.03) × 10? s?1. The relative magnitudes of the two rate constants reflect the greater probability for reaction to occur along the C-C?H? σ-bond insertion pathway, consistent with thermodynamic arguments. DFT calculations at the B3LYP/6-311++G(d,p) level of theory suggest the most likely geometries and relative energies of the reactants, intermediates, and products.  相似文献   

14.
Reactions between Mg(+) and O(3), O(2), N(2), CO(2) and N(2)O were studied using the pulsed laser photo-dissociation at 193 nm of Mg(C(5)H(7)O(2))(2) vapour, followed by time-resolved laser-induced fluorescence of Mg(+) at 279.6 nm (Mg(+)(3(2)P(3/2)-3(2)S(1/2))). The rate coefficient for the reaction Mg(+) + O(3) is at the Langevin capture rate coefficient and independent of temperature, k(190-340 K) = (1.17 ± 0.19) × 10(-9) cm(3) molecule(-1) s(-1) (1σ error). The reaction MgO(+) + O(3) is also fast, k(295 K) = (8.5 ± 1.5) × 10(-10) cm(3) molecule(-1) s(-1), and produces Mg(+) + 2O(2) with a branching ratio of (0.35 ± 0.21), the major channel forming MgO(2)(+) + O(2). Rate data for Mg(+) recombination reactions yielded the following low-pressure limiting rate coefficients: k(Mg(+) + N(2)) = 2.7 × 10(-31) (T/300 K)(-1.88); k(Mg(+) + O(2)) = 4.1 × 10(-31) (T/300 K)(-1.65); k(Mg(+) + CO(2)) = 7.3 × 10(-30) (T/300 K)(-1.59); k(Mg(+) + N(2)O) = 1.9 × 10(-30) (T/300 K)(-2.51) cm(6) molecule(-2) s(-1), with 1σ errors of ±15%. Reactions involving molecular Mg-containing ions were then studied at 295 K by the pulsed laser ablation of a magnesite target in a fast flow tube, with mass spectrometric detection. Rate coefficients for the following ligand-switching reactions were measured: k(Mg(+)·CO(2) + H(2)O → Mg(+)·H(2)O + CO(2)) = (5.1 ± 0.9) × 10(-11); k(MgO(2)(+) + H(2)O → Mg(+)·H(2)O + O(2)) = (1.9 ± 0.6) × 10(-11); k(Mg(+)·N(2) + O(2)→ Mg(+)·O(2) + N(2)) = (3.5 ± 1.5) × 10(-12) cm(3) molecule(-1) s(-1). Low-pressure limiting rate coefficients were obtained for the following recombination reactions in He: k(MgO(2)(+) + O(2)) = 9.0 × 10(-30) (T/300 K)(-3.80); k(Mg(+)·CO(2) + CO(2)) = 2.3 × 10(-29) (T/300 K)(-5.08); k(Mg(+)·H(2)O + H(2)O) = 3.0 × 10(-28) (T/300 K)(-3.96); k(MgO(2)(+) + N(2)) = 4.7 × 10(-30) (T/300 K)(-3.75); k(MgO(2)(+) + CO(2)) = 6.6 × 10(-29) (T/300 K)(-4.18); k(Mg(+)·H(2)O + O(2)) = 1.2 × 10(-27) (T/300 K)(-4.13) cm(6) molecule(-2) s(-1). The implications of these results for magnesium ion chemistry in the atmosphere are discussed.  相似文献   

15.
The recombination rate constants for the reactions NH2(X2B1) + NH2(X2B1) + M → N2H4 + M and NH2(X2B1) + H + M → NH3 + M, where M was CH4, C2H6, CO2, CF4, or SF6, were measured in the same experiment over presseure ranges of 1-20 and 7-20 Torr, respectively, at 296 ± 2 K. The NH2 radical was produced by the 193 nm laser photolysis of NH3. Both NH2 and NH3 were monitored simultaneously following the photolysis laser pulse. High-resolution time-resolved absorption spectroscopy was used to monitor the temporal dependence of both species: NH2 on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A2A1 ← (0,0,0)X2B1 electronic transition near 675 nm and NH3 in the IR on either of the inversion doublets of the qQ3(3) rotational transition of the ν1 fundamental near 2999 nm. The NH2 self-recombination clearly exhibited falloff behavior for the third-body collision partners used in this work. The pressure dependences of the NH2 self-recombination rate constants were fit using Troe’s parametrization scheme, k(inf), k(0), and F(cent), with k(inf) = 7.9 × 10(-11) cm3 molecule(-1) s(-1), the theoretical value calculated by Klippenstein et al. (J. Phys. Chem. A113, 113, 10241). The individual Troe parameters were CH4, k(0)(CH4) = 9.4 × 10(-29) and F(cent)(CH4) = 0.61; C2H6, k(0)(C2H6) = 1.5 × 10(-28) and F(cent)(C2H6) = 0.80; CO2, k(0)(CO2) = 8.6 × 10(-29) and F(cent)(CO2) = 0.66; CF4, k(0)(CF4) = 1.1 × 10(-28) and F(cent)(CF4) = 0.55; and SF6, k(0)(SF6) = 1.9 × 10(-28) and F(cent)(SF6) = 0.52, where the units of k0 are cm6 molecule(-2) s(-1). The NH2 + H + M reaction rate constant was assumed to be in the three-body pressure regime, and the association rate constants were CH4, (6.0 ± 1.8) × 10(-30); C2H6, (1.1 ± 0.41) × 10(-29); CO2, (6.5 ± 1.8) × 10(-30); CF4, (8.3 ± 1.7) × 10(-30); and SF6, (1.4 ± 0.30) × 10(-29), with units cm6 molecule(-1) s,(-1) and the systematic and experimental errors are given at the 2σ confidence level.  相似文献   

16.
The potential energy surface information of the CH2CO + CN reaction is obtained at the B3LYP/6‐311+G(d,p) level. To gain further mechanistic knowledge, higher‐level single‐point calculations for the stationary points are performed at the QCISD(T)/6‐311++G(d,p) level. The CH2CO + CN reaction proceeds through four possible mechanisms: direct hydrogen abstraction, olefinic carbon addition–elimination, carbonyl carbon addition–elimination, and side oxygen addition–elimination. Our calculations demonstrate that R→IM1→TS3→P3: CH2CN + CO is the energetically favorable channel; however, channel R→IM2→TS4→P4: CH2NC + CO is considerably competitive, especially as the temperature increases (R, IM, TS, and P represent reactant, intermediate, transition state, and product, respectively). The present study may be helpful in probing the mechanism of the CH2CO + CN reaction. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

17.
High-level ab initio calculations have been performed to study the mechanism and kinetics of the reaction of the cyanomethylene radical (HCCN) with the NO. The species involved have been optimized at the B3LYP/6-311++G(3df,2p) level, and their corresponding single-point energies are improved by the CCSD(T)/aug-cc-PVQZ//B3LYP/6-311++G(3df,2p) approach. From the calculated potential energy surface, we have predicted the favorable pathways for the formation of several isomers of a HCCN-NO complex. Barrierless formation of HCN + NCO (P1) is also possible. Formation of HCNO + CN (P3) is endoergic but may become significant at high temperatures. To rationalize the scenario of our calculated results, we also employ the Fukui functions and hard-and-soft acid-and-base (HSAB) theory to seek possible clues. The predicted total rate coefficient, k(total), at He pressure 760 Torr can be represented with the equation k(total) = 1.40 × 10(-7) T(-2.01) exp(3.15 kcal mol(-1)/RT) at T = 298-3000 K in units of cm(3) molecule(-1) s(-1). The predicted total rate coefficients at some available conditions (He pressures of 6, 18, and 30 Torr in the temperature of 298 K) are in reasonable agreement with experimental observation. In addition, the rate constants for key individual product channels are provided in different temperature and pressure conditions.  相似文献   

18.
The kinetics of the CN + HCNO reaction were studied using laser-induced fluorescence and infrared diode laser absorption spectroscopy. The total rate constant was measured to be k(T) = (3.95 +/- 0.53) x 10(-11) exp[(287.1 +/- 44.5)/T] cm3 molec(-1) s(-1), over the temperature range 298-388 K, with a value of k1 = (1.04 +/- 0.1) x 10(-10) cm3 molec(-1) s(-1) at 298 K. After detection of products and consideration of secondary chemistry, we conclude that NO + HCCN is the only major product channel.  相似文献   

19.
The CH2Cl + CH3 (1) and CHCl2 + CH3 (2) cross-radical reactions were studied by laser photolysis/photoionization mass spectroscopy. Overall rate constants were obtained in direct real-time experiments in the temperature region 301-800 K and bath gas (helium) density (6-12) x 10(16) atom cm(-3). The observed rate constant of reaction 1 can be represented by an Arrhenius expression k1 = 3.93 x 10(-11) exp(91 K/T) cm3 molecule(-1) s(-1) (+/-25%) or as an average temperature-independent value of k1= (4.8 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1). The rate constant of reaction 2 can be expressed as k2= 1.66 x 10(-11) exp(359 K/T) cm3 molecule(-1) s(-1) (+/-25%). C2H4 and C2H3Cl were detected as the primary products of reactions 1 and 2, respectively. The experimental values of the rate constant are in reasonable agreement with the prediction based on the "geometric mean rule." A separate experimental attempt to determine the rate constants of the high-temperature CH2Cl + O2 (10) and CHCl2 + O2 (11) reaction resulted in an upper limit of 1.2 x 10(-16) cm(3) molecule(-1) s(-1) for k10 and k11 at 800 K.  相似文献   

20.
The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号