首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures and vibrations of p-diaminobenzene (PDAB) in the S0 and S1 states have been studied by ab initio quantum-chemical calculations. Results from geometry optimization show that the two stable cis and trans conformers of PDAB are non-planar in the S0 state. Upon electronic excitation to the S1 state, enhanced interaction between the ring and the amino substituent causes the molecule to become planar and contract along the long in-plane axis. A detailed analysis of the normal vibrations of PDAB in both states has been done on the basis of the motions of individual atoms as well as reduced masses, force constants and frequencies. The computed frequencies are in reasonably good agreement with the available experimental data.  相似文献   

2.
A group of novel Schiff base derivatives were synthesized and characterized by NMR spectra, X-ray, mass and CHN analysis. An excited state intramolecular proton transfer (ESIPT) process in hydroxy Schiff base (SB4) has been studied using emission spectroscopy and it was detected that the two distinct ground state isomers of I and II are responsible for the emission. The comparison of the emission wavelength in hydrocarbon solvent strongly supports that trans enol form predominates over the cis enol form for Schiff base (SB4). With increasing base concentration of the solutions of hydroxy substituted Schiff bases (SB4 and SB5), two isobestic points are found which confirm the equilibrium among the trans enol form, anion and the cis enol form. The fluorescence of (SB4) quenched markedly with the gradual addition of Cu(2+) but the fluorescence properties of (SB5) was influenced by other metal ions. Therefore Schiff base (SB5) can be used as a new fluorescence sensor to detect the quantity of Cu(2+) ion in any sample solution depending on the relative intensity change. DFT calculations on energy, dipole moment, charge distribution of the rotamers in the ground and excited states of the Schiff base derivatives were performed and discussed. PES calculation indicates that the energy barrier for the interconversion of two rotamers is too high in the excited state than the ground state.  相似文献   

3.
Diffuse reflectance Fourier transform infrared (DRIFT) spectroscopy was used to study the adsorption process of the water-soluble polyacrylic acid (PAA) polymer on hydrous δ-Al2O3. Vibrational assignment of PAA, sodium polyacrylate, (Na–PA) and the PA-oxide surface complex was achieved by comparison of observed band position and intensity in the DRIFT spectra with wavenumbers and intensities from ab initio quantum mechanical calculations. The presented data of polyacrylic acid suggest that IR data calculated ab initio on relatively short oligomers (quantum-mechanical oligomer approach) may provide valuable information regarding the interpretation of polyelectrolyte infrared spectra. Batch adsorption experiments were performed to sorb PAA onto the δ-Al2O3 surface. The results obtained from DRIFT studies were compared with adsorption isotherm experiments in order to relate the level of PAA coverage to the nature of the surface complex. Ab initio molecular orbital calculations on PAA/Al2O3 clusters were used to model possible surface complexes. Strong correlation were found between theoretical and observed DRIFT frequencies of the antisymmetric R-COO vibration. A number of possible configurations of the polyacrylic acid/aluminate surface complex were tested via ab initio calculations. These possible configurations included different di-aluminium octahedral Al3+ surface models. Results obtained from adsorption isotherm experiments, DRIFT spectra and ab initio calculations indicate that the carboxylate oxygens bridge an Al3+-octahedral dimer [Al2(OH)24(H2O)2(OH)] in a ligand-exchange inner sphere complex.  相似文献   

4.
5.
The molecular structure of phenylsilane has been determined accurately by gas-phase electron diffraction and ab initio MO calculations at the MP2(f.c.)/6-31G* level. The calculations indicate that the perpendicular conformation of the molecule, with a Si–H bond in a plane orthogonal to the plane of the benzene ring, is the potential energy minimum. The coplanar conformation, with a Si–H bond in the plane of the ring, corresponds to a rotational transition state. However, the difference in energy is very small, 0.13 kJ mol−1, implying free rotation of the substituent at the temperature of the electron diffraction experiment (301 K). Important bond lengths from electron diffraction are: <rg(C–C)>=1.403±0.003 Å, rg(Si–C)=1.870±0.004 Å, and rg(Si–H)=1.497±0.007 Å. The calculations indicate that the Cipso–Cortho bonds are 0.010 Å longer than the other C–C bonds. The internal ring angle at the ipso position is 118.1±0.2° from electron diffraction and 118.0° from calculations. This confirms the more than 40-year old suggestion of a possible angular deformation of the ring in phenylsilane, in an early electron diffraction study by F.A. Keidel, S.H. Bauer, J. Chem. Phys. 25 (1956) 1218.  相似文献   

6.
A remeasurement of the rotational spectra of the normal and hydroxyl deuterated isotopomers of cyclopropyl carbinol (cyclopropane methanol, (CH2)2CH(CH2OH)) using Fourier-transform microwave spectroscopy has provided refined rotational constants and centrifugal distortion constants for this molecule. Rotational constants for an additional four singly substituted 13C isotopomers, the OD isotopomer, and the 18O isotopomer are consistent with a conformer in which the OH group forms an intramolecular hydrogen bond with the edge of the cyclopropyl ring. The observed a-type transition frequencies for the normal and deuterated species are in reasonable agreement with a previous microwave study (although some frequencies differ by several hundred kilohertz), but the few b- and c-type lines that were measured in the range of our spectrometer were found to differ by several megahertz from the previous literature measurements, leading to A rotational constants that differ significantly from those reported previously. The refined rotational constants for the normal isotopic species are A=12470.7795(23) MHz, B=3236.4678(7) MHz, C=2894.4831(7) MHz, while those of the deuterated species are A=12069.2653(24) MHz, B=3177.1540(8) MHz and C=2826.2658(7) MHz. Results of ab initio optimizations on seven conformers for this molecule carried out at the MP2/6-311+G(d,p) level will be compared with the experimentally determined structural parameters.  相似文献   

7.
The molecular structure of the first three members of the fluorocyanopolyynes was studied by ab initio Hartree-Fock calculations with a polarized double zeta basis set and at MP2 level with the same basis set. Alternating triple and single bonds were found; a theoretical estimate of rotational constants and dipole moments was performed and a comparison with the available experimental data was made. An analysis of the theoretical vibrational frequencies of the title compounds was carried out.  相似文献   

8.
The unimolecular rearrangements of hydrogen, methyl and phenyl groups at the Si atom in α-silylcarbenium ions have been investigated using an ab initio molecular orbital method. MP2/6–31 + G*//HF/6–31G* calculations predict that all three groups migrate from the Si to an adjacent Cα with no energy barrier. Thus, the silicenium ion is the only stable species in each potential energy surface. The conformation of the benzylsilicenium ion, (C6H5)CH2−SiH2+, indicates that the phenyl ring is significantly bent toward the silyl cationic center in order to interact with the vacant 3p(Si+) orbital. In contrast to MP2 results, Hartree-Fuck calculations (both HF/3–21G* and HF/6–31G* levels) predict small energy barriers for 1,2-migrations of H and Me (1.4 kcal mol−1 for H migration, and 1.5 kcal mol−1 for Me migration, respectively, at the HF/6–31G* level). This difference provides convincing evidence that the incorporation of electron correlation is of particular importance in describing the potential energy surface for the rearrangement of α-silylcarbenium ions to silicenium ions. The results of the calculations have also been applied to the possible rearrangement mechanism of α-chlorosilanes to chlorosilanes, assuming that the experimental conditions are favorable toward the generation of ionic species. Various factors which may govern the migratory aptitudes of various R groups, i.e. (1) activation energies, (2) overall reaction energies and (3) the conformational preference of reactants have been investigated. The calculated activation energy obtained, namely the energy for the generation of the silicenium ion and the C−1 ion from an α-chlorosilane, is consistent with the experimental migratory aptitude in the gas phase observed in mass spectrometers.  相似文献   

9.
The infrared spectra (3500–50 cm−1) of the gas and solid and the Raman spectra (3500–50 cm−1) of the liquid and solid have been recorded for 2-hexyne, CH3–CC–CH2CH2CH3. Variable temperature studies of the infrared spectrum (3500–400 cm−1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/gauche conformer pairs, the anti(trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm−1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules.  相似文献   

10.
Density functional theory (DFT) technique is the most commonly used approach when it comes to computation of vibrational spectra of molecular species. In this study, we compare anharmonic spectra of several organic molecules such as allene, propyne, glycine, and imidazole, computed from ab initio MP2 potentials and DFT potentials based on commonly used BLYP and B3LYP functionals. Anharmonic spectra are obtained using the direct vibrational self-consistent field (VSCF) method and its correlation-corrected extension (CC-VSCF). The results of computations are compared with available experimental data. It is shown that the most accurate vibrational frequencies are obtained with the MP2 method, followed by the DFT/B3LYP method, while DFT/BLYP results are often unsatisfactory. Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.  相似文献   

11.
The addition of hydrogen peroxide to vanadium (V) precursors in aqueous acidic solutions leads to the formation of a cationic monoperoxospecies [VO(O2)]+ and an anionic diperoxocomplex [VO(O2)2], depending on the pH and on the excess of H2O2. The latter may undergo protonation to form the neutral complex [HVO(O2)2]. 51V-NMR data and ab initio calculations suggest that the neutral complex is formed via protonation of a peroxide oxygen and that in such a species, as well as in the other two peroxovanadium derivatives, the usual η2 arrangement of the peroxo groups is maintained. The comparison of reactivity data of the three complexes in the self-decomposition reaction and in the oxidation of uracil, indicates that the neutral diperoxocomplex exhibits an oxidizing power considerably larger than that of the other two peroxovanadium species.  相似文献   

12.
A comparative analysis of the IR and Raman spectra of aminoglutethimide (AG) dissolved in CCl4, CHCl3 and CH3CN was performed. Most of the absorption bands were assigned to characteristic group vibrations with the use of the IR and Raman spectra of deuterated AG, glutethimide, N-methyl glutethimide and glutarimide. The AG samples very weakly interacting with the environment were studied with the use of the Ar matrix isolation IR spectra. For comparison, the IR and Raman spectra of the crystalline samples formed by hydrogen-bonded AG molecules were recorded. The spectra were analyzed also in terms of normal modes and the harmonic approximation with the use of the ab initio restricted Hartree-Fock theory. It was found that increasing the solute concentration in CCl4 and CHCl3 leads to formation of the autoassociates. In CH3CN the solute–solvent AG–CH3CN dimers occur. Possible structures of the associates were theoretically studied on the model systems: the centrosymmetric glutarimide dimer and the linear AG–CH3CN dimer. By a comparison of the theoretical and experimental spectra we were able to identify several peaks originating from the solute–solvent interactions.  相似文献   

13.
The heptasilane Me(SiMe3)2SiSiH2SiMe(SiMe3)2 was synthesized from Me(SiMe3)2SiK and H2Si(OSO2CF3)2. Crystals suitable for a X-ray single crystal analysis could be grown, with the somewhat surprising result that the two dihedral angles (H3)CSiSi(H2)Si are different in the crystal (24.58(10)° and 31.67(11)°). SiSiSi-bonds angles are widened, with values up to 117°. Ab initio calculations at the density functional B3LYP level employing 6-311G(d) basis sets predict minima for five conformers 1-5 with relative energies 0.0, 3.1, 8.2, 10.8 and 18.1 kJ/mol, respectively. Moreover, SiSiSiSi dihedral angles spanning the range 43.5-172.3° are predicted, reflecting the small forces which are required for distorting these angles.In the Raman spectrum of a solution in toluene, three lines at 350, 340 and 330 cm−1 are observed in a wavenumber range which is typical for the SiSi-pulsation of methylated oligosilanes. The relative intensity ratio of the bands is temperature dependent, reflecting the changes in conformer concentrations that occur according to Boltzman’s law. Supported by the ab initio calculations, the Raman band at 350 cm−1 is assigned to an ‘averaged’ conformer 1 and 2, because a rapid interconversion between 1 and 2 has to be assumed due to a small barrier separating them. The bands with wavenumbers 340 and 330 cm−1 originate from conformers 3 and 4. From the Raman spectra, relative energies 0.0 (1 + 2), 2.2 (3) and 6.3 (4) kJ/mol are deduced, the presence of 5 is not observed. Caused by solvent effects, these values differ somewhat from the ab initio results.  相似文献   

14.
The standard gas-phase enthalpies of formation, at T = 298.15 K, of the complete series of fluorobenzene and their corresponding dewar isomers have been determined by means of the CBS-QB3 and G3MP2B3 composite approaches. These values have been estimated by using appropriate supporting reactions, such as, reactions of atomization or of atom substitution. The results show that there is a linear dependence between the enthalpy of the most stable n-fluorobenzene and the corresponding n-fluorodewar benzene (n = 0, 1, …, 6). Further, the estimates are always more negative than the experimental results and so, suggested enthalpies of formation for 1,2,3-, 1,2,4- and 1,3,5-trifluorobenzenes and for 1,2,3,4- and 1,2,3,5-tetrafluorobenzenes are those retrieved from G3MP2B3 calculations added by 8 kJ/mol. The interaction of four different M+ ions with fluorobenzene and the three difluorobenzenes shows that the σ-interaction with 1,2-difluorobenzene is stronger than π-interaction on these fluorobenzenes.  相似文献   

15.
Gas electron diffraction is applied to determine the geometric parameters of the silacyclobutane molecule using a dynamic model where the ring puckering was treated as a large amplitude motion. The structural parameters and the parameters of the potential function were refined taking into account the relaxation of the molecular geometry estimated from ab initio calculations at the MP2/6-311+G(d, p) level of theory. The potential function has been described as V() = V0[(/e)2 − 1]2 with the following parameters V0 = 0.82 ± 0.60 kcal/mol and e = 33.5 ± 2.7°, where is a puckering angle of the ring.

The geometric parameters at the minimum V() (ra in Å, in degrees and uncertainties given as three times the standard deviations including a scale error) are: r(Si–Hax) = 1.467(96), r(Si–Heq) = 1.468(96), r(Si–C) = 1.885(2), r(C–C) = 1.571(3), r(C–H) = 1.100(3), CSiC = 77.2(9), HSiH = 108.3, SiCHeq = 123.5(16), SiCHax = 111.9(16), CC5Heq = 118.4(24), CC5Hax = 112.3(24), HC3H = 107.7, δ(HSiH) = 6.6, δ(HC3H) = 7.0, where the tilts δ, HSiH, and HC3H are estimated from ab initio constraints. The structural parameters are compared with those obtained for related compounds.  相似文献   


16.
17.
利用量子化学方法对第一激发态HOOO的裂解反应进行了理论研究.所有驻点(反应物、产物和过渡态)的几何结构优化和振动分析都是在CASSCF/6-31 G(d,p)理论水平下进行的.反应路径上的选择点及驻点都在CASPT2/6-31 G(d,p)//CASSCF(19,13)/6-31 G(d,p)和MRCI/6-31 G(d,p)//CASSCF(19,13)/6-31 G(d,p)理论水平下进行单点能量校正.CASSCF,CASPT2和MRCI水平的理论计算结果显示,第一激发态HOOO的裂解反应包含一个对称性变化的过程.它首先通过了一个Cs对称性的过渡态,然后逐渐变化为线性结构,最终生成产物O2(3Σg-)和OH(2Π).  相似文献   

18.
Here we report ab initio and density functional results for molecular properties of ethyl azidoacetate (N3CH2COOC2H5) and for the corresponding singly ionized structure (N3CH2COOC2H5+). Ab initio ionization energies based on Koopmans’ theorem are in excellent agreement with the experimental data from ultraviolet photoelectron spectroscopy. DFT adiabatic energy differences between neutral and ionized structures are very sensitive to electronic correlation effects and are not in very good agreement with experiment. The results for the structure and vibrational frequencies are compared with the experimental data of related molecular structures.  相似文献   

19.
Ab initio and density functional theory (DFT) calculations using the GAUSSIAN 94 program have been performed to investigate the molecular structures of HNSi and HSiN in the ground state as well as the transition state for the HNSi–HSiN isomerization reaction at the 6-311G(d,p), 6-311+G(2d,p) and 6-311+G(2df,p) basis sets. The results show that DFT calculations at higher levels of theory reproduce experimental vibrational frequencies of both HNSi and HSiN better than ab initio methods including electron correlation effects. Those calculated geometries are accurate enough to predict the rotational constant of HNSi. The barrier height for the isomerization reaction is found to be about 10 kcal/mol.  相似文献   

20.
Several porphyrin dimers have been newly designed and synthesized to construct assemblies with 1,4-diazabicyclo[2.2.2]octane (DABCO) as a bidentate binding ligand. Semi empirical (AM1) and ab initio calculations have been used to study the assemblies generated by the organization of dimers and DABCO, including the computation of 1H NMR complexation-induced chemical shifts using the ab initio/GIAO methodology. The diagnostic capacity of the theoretical method has been applied to explain experimental results and geometrical features of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号