首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the 3D nonlinear equations of motion of the suspended cable with moving mass are obtained via the Hamilton principle, and its transient linear planar dynamics is investigated. Considering the quasi-static assumption, the condensed planar model accounting for the effect of the moving mass is derived, and it is then discretized by choosing the static deflection and sine series as shape functions. It is shown that this expansion shows good convergence features. The Newmark method is used to investigate the transient response. The effects of the inertia force, mass, sag and velocity of the moving mass on the transient dynamics of the suspended cable are systematically investigated. Finally, the horizontal tension of the suspended cable and the case of sequentially moving masses are examined.  相似文献   

2.
A theory of free linear vibrations of arbitrarily sagged inclined cables in a viscous fluid is presented in the framework of the heavy fluid loading concept. The static equilibrium shape of the cable is found by using the model of inextensible catenary and the validity ranges of this approximation are assessed. The dynamics of the viscous fluid is described by the linearised Navier–Stokes equations and their solution is pursued analytically by formulating the fluid field variables via potential functions. The vibration problem of a submerged cable is solved by Galerkin's method and the modal added mass and modal viscous damping coefficients are calculated. As a prerequisite for this analysis, the free vibrations of a cable in vacuum are addressed and a very good agreement with known results is observed. The physical interpretation of the dependence of modal added mass and modal damping coefficients on the ‘design variables’ for a fluid-loaded cable is given and the possible extensions of the suggested theory to capture weakly nonlinear effects are highlighted.  相似文献   

3.
This paper is devoted to cable–flexible support coupled nonlinear vibrations using a asymptotic boundary modulation technique. Asymptotic/reduced cable–support coupled nonlinear models are established first using the boundary modulation concept, after a proper scaling analysis at the cable–support interface. The cable and the support turn out to be coupled through cable-induced and support-induced boundary modulations in a rational way, which are derived analytically by asymptotic approximations and multiple scale expansions. Based upon the reduced models, two prototypical kinds of cable–support coupled dynamics are fully investigated, i.e., one with the support excited and the other with the cable excited. Essentially, they correspond to refined versions of two typical degenerate cable dynamics, i.e., cables excited externally with fixed supports and cables excited by ideal moving supports. Applying numerical continuation algorithms to the reduced models, cable–support typical coupled frequency response diagrams are constructed, with their stabilities, bifurcation characteristics, and the coupling’s effects on the cable determined. All these approximate analytical results are verified by the numerical results from the original full cable–support system using the finite difference method.  相似文献   

4.
Resonant multi-modal dynamics due to planar 2:1 internal resonances in the non-linear, finite-amplitude, free vibrations of horizontal/inclined cables are parametrically investigated based on the second-order multiple scales solution in Part I [1] (in press). The already validated kinematically non-condensed cable model accounts for the effects of both non-linear dynamic extensibility and system asymmetry due to inclined sagged configurations. Actual activation of 2:1 resonances is discussed, enlightening on a remarkable qualitative difference of horizontal/inclined cables as regards non-linear orthogonality properties of normal modes. Based on the analysis of modal contribution and solution convergence of various resonant cables, hints are obtained on proper reduced-order model selections from the asymptotic solution accounting for higher-order effects of quadratic nonlinearities. The dependence of resonant dynamics on coupled vibration amplitudes, and the significant effects of cable sag, inclination and extensibility on system non-linear behavior are highlighted, along with meaningful contributions of longitudinal dynamics. The spatio-temporal variation of non-linear dynamic configurations and dynamic tensions associated with 2:1 resonant non-linear normal modes is illustrated. Overall, the analytical predictions are validated by finite difference-based numerical investigations of the original partial-differential equations of motion.  相似文献   

5.
Summary A computational scheme for determining the dynamic stiffness coefficients of a linear, inclined, translating and viscously/hysteretically damped cable element is outlined. Also taken into account is the coupling between inplane transverse and longitudinal forms of cable vibration. The scheme is based on conversion of the governing set of quasistatic boundary value problems into a larger equivalent set of initial value problems, which are subsequently numerically integrated in a spatial domain using marching algorithms. Numerical results which bring out the nature of the dynamic stiffness coefficients are presented. A specific example of random vibration analysis of a long span cable subjected to earthquake support motions modeled as vector gaussian random processes is also discussed. The approach presented is versatile and capable of handling many complicating effects in cable dynamics in a unified manner.The work reported in this paper has been carried out as a part of a research project on dynamics of extensible cables funded by the Department of Science and Technology, Government of India. The financial support received is gratefully acknowledged.  相似文献   

6.
Rain–wind induced vibration is an aeroelastic phenomenon that occurs on the inclined cables of cable-stayed bridges and arises due to the interaction between the unsteady wind loading and the formation of water rivulets on the cable surface. A new numerical method has been developed at the University of Strathclyde to simulate the influence of the external flow field on the rivulet dynamics and vice versa. The approach is to couple a Discrete Vortex Method solver to determine the external flow field and unsteady aerodynamic loading, and a pseudo-spectral solver based on lubrication theory to model the evolution and growth of the water rivulets on the cable surface under external loading. Results of this coupled model are presented, to provide detailed information on the development of water rivulets and their interaction with the aerodynamic field. In particular, the effect of the initial water film thickness and the angle of attack in plane on the resulting rivulets are investigated. The results are consistent with previous full scale and experimental observations with rivulets forming on the upper surface of the cable only in configurations where rain–wind induced vibration has been observed. Additionally, the thickness of the lower rivulet is found to be self-limiting in all configurations. The results demonstrate that the model can be used to enhance the understanding of the underlying physical mechanisms of rain–wind-induced vibration.  相似文献   

7.
This paper is first of the two papers dealing with analytical investigation of resonant multi-modal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables – which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations – are presented. A multi-dimensional Galerkin expansion of the solution of nonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effects of quadratic/cubic nonlinearities, approximate closed-form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation.  相似文献   

8.
一般情况下小垂度索的刚度方程及其应用   总被引:4,自引:0,他引:4  
路志浩  陈以一 《力学季刊》2000,21(2):254-261
索单元的刚度随变形而变化,索结构的力学分析是一个典型的几何非线性问题,因而在数值分析中单索的刚度方程显得尤为重要。由于许多文献不常见的单索刚度方程在推导时忽略了索单元元弦向倾的影响,用来进行结构计算尚存在一定的误差。本文因此考虑了影响单元刚度的弦倾角等因素,推导了一般情况下小垂度索的显式表达刚度方程,并运用该刚度方程进行结构数值分析,与采用近似刚度方程的分析结果进行了比较,给出了近似刚度方程与本文  相似文献   

9.
Dynamics of an Elastic Cable Carrying a Moving Mass Particle   总被引:3,自引:0,他引:3  
Al-Qassab  M.  Nair  S.  O'Leary  J. 《Nonlinear dynamics》2003,33(1):11-32
The dynamic behavior of an elastic catenary cable due to a moving mass alongits length is investigated. The equations of motions are derived using theHamilton's principle for general supports that include the horizontal andinclined cables with small and large sags and for variable velocity of themoving mass. Those equations of motions are in general nonlinear partialdifferential equations due to the initial curvature of the cable. Theequations are also complex due to the presence of three different types ofaccelerations of the moving mass. Those are the normal, Coriolis andcentrifugal accelerations. Therefore, we used the Galerkin procedure withsine function (Fourier representation) and anti-derivative functions of thecompactly supported wavelets as trial basis and used direct integrationmethods to integrate the discretized equations of motions. Newton–Raphsonmethod is used for iterations. Several examples are studied and the resultsas obtained by Fourier and wavelet representations are compared. Because ofthe localization feature, wavelets are proven to minimize the spuriousoscillations specially those appearing in the cable tension.  相似文献   

10.
The aerodynamic forces on a stay cable under a rain-wind induced vibration (RWIV) are difficult to measure directly in a wind tunnel test. This paper presents a hybrid approach that combines an experiment with computational fluid dynamics (CFD) for the investigation on aerodynamic forces of a stay cable under a RWIV. The stay cable and flow field were considered as two substructures of the system. The oscillation of the stay cable was first measured by using a wind tunnel test of a RWIV under an artificial rainfall condition. The oscillation of the cable was treated as a previously known moving boundary condition and applied to the flow field. Only the flow field with the known moving cable boundary was then numerically simulated by using a CFD method (such as Fluent 6.3). The transient aerodynamic forces of the stay cable with a predetermined cable oscillation were obtained from numerical calculations. The characteristics of the aerodynamic forces in the time domain and frequency domain were then analysed for various cases. To verify the feasibility and accuracy of the proposed hybrid approach, the transient aerodynamic forces were applied to a single-degree-of-freedom model (SDOF) of the stay cable to calculate the RWIV of the cable. A comparison was performed between the oscillation responses of the stay cable obtained from the calculated (SDOF model) and experimental results, and the results indicate that the hybrid approach accurately simulates the transient aerodynamic forces of the stay cable. The equivalent damping ratios induced by the aerodynamic forces were obtained for various wind speeds. Furthermore, a nonlinear model of the aerodynamic force is proposed based on the calculation results, and the coefficients in the model were identified by a nonlinear least-squares technique.  相似文献   

11.
索结构因其轻、柔及高强度等特性被作为受拉构件广泛应用于工程领域.一方面,环境载荷激励下索结构产生了复杂的大幅动力响应,给结构带来危害;另一方面,索结构是一个同时含有平方和立方非线性的典型力学系统,具有非常丰富的非线性动力学行为.因此,索动力学的研究受到了工程界和力学界的广泛关注,产生了大量的研究成果.本文尝试从索结构动力学建模、非线性内共振分析、支座运动激励下的索动力学以及复杂环境载荷作用4个方面对索动力学研究进行总结,并讨论目前研究的局限性.  相似文献   

12.
In this paper, how to compute the eigenfrequencies of the structures composed of a series of inclined cables is shown. The physics of an inclined cable can be complicated, so solving the differential equations even approximately is difficult. However, rather than solving the system of 4 first-order equations governing the dynamics of each cable, the governing equations are instead converted to a set of equations that the exterior matrix satisfies. Therefore, the exterior matrix method (EMM) is used without solving the original governing equations. Even though this produces a system of 6 first-order equations, the simple asymptotic techniques to find the first three terms of the perturbative solution can be used. The solutions can then be assembled to produce a 6 × 6 exterior matrix for a cable section. The matrices for each cable in the structure are multiplied together, along with the exterior matrices for each joint. The roots of the product give us the eigenfrequencies of the system.  相似文献   

13.
长单索结构的多参数流固耦合分析   总被引:1,自引:0,他引:1  
介绍了长索结构在风场中的流固耦合振动,总结已有的流固耦合基本理论,着重介绍弱耦合问题的具体分析过程.以100m长索在不同拉索倾角和风向角的多参数流固耦合风振为例,应用ANSYS-CFX软件分别在层流模型和湍流模型风场中进行数值分析,得出与力学概念分析基本一致的结果.  相似文献   

14.
The approximate eigenfrequencies for the in-plane vibrations of a cable struc- ture consisting of inclined cables,together with point masses at various points were com- puted.It was discovered that the classical transfer matrix method was inadequate for this task,and hence the larger exterior matrices were used to determine the eigenfrequency equation.Then predictions of the dynamics of the general cable structure based on the asymptotic estimates of the exterior matrices were made.  相似文献   

15.
A dynamic model for an inclined carbon ?ber reinforced polymer(CFRP)cable is established, and the linear and nonlinear dynamic behaviors are investigated in detail. The partial differential equations for both the in-plane and out-of-plane dynamics of the inclined CFRP cable are obtained by Hamilton's principle. The linear eigenvalues are explored theoretically. Then, the ordinary differential equations for analyzing the dynamic behaviors are obtained by the Galerkin integral and dimensionless treatments.The steady-state solutions of the nonlinear equations are obtained by the multiple scale method(MSM) and the Newton-Raphson method. The frequency-and force-response curves are used to investigate the dynamic behaviors of the inclined CFRP cable under simultaneous internal(between the lowest in-plane and out-of-plane modes) and external resonances, i.e., the primary resonances induced by the excitations of the in-plane mode,the out-of-plane mode, and both the in-plane mode and the out-of-plane mode, respectively. The effects of the key parameters, e.g., Young's modulus, the excitation amplitude,and the frequency on the dynamic behaviors, are discussed in detail. Some interesting phenomena and results are observed and concluded.  相似文献   

16.
电缆沿桥跨海铺设是海缆铺设的一种新的形式, 针对由汽车和列车交通载荷诱发的沿跨海桥梁敷设电缆的振动问题, 建立了桥梁-电缆的整体组合结构分析模型, 将汽车和列车的作用载荷简化为移动的随机集中载荷序列, 发展虚拟激励法(pseudo-excitation method, PEM)用于分析移动随机载荷作用下电缆位移和应力响应的标准差及演变功率谱 (power spectral density, PSD), 并研究了汽车和列车运行速度对电缆动力响应标准差的影响. PEM将移动随机载荷问题转化为特定频率简谐移动载荷作用下的动力响应分析, 能够计算得到与Monte Carlo (MC) 方法非常吻合的电缆动力响应标准差, 但所需的时域响应分析次数远少于MC方法. 数值结果表明, 随着汽车和列车运行速度的提升, 电缆位移和应力标准差呈现增大的趋势; 在汽车和列车交通载荷作用下, 铝护套的位移标准差和功率谱的值比缆芯要大, 这可能会使得电缆的疲劳破坏首先发生在铝护套层, 本文工作对电缆沿桥跨海铺设实际工程具有一定的借鉴意义.   相似文献   

17.
对于柔性旋转火箭发射系统,考虑高速燃气喷流作用下的系统耦合振动.建立发射系统动力学模型,数值计算发射管流场结构,确定系统瞬态响应和燃气流冲击对火箭发射姿态的影响,更加真实地模拟柔性旋转火箭的发射动力学环境.  相似文献   

18.
Introduction Inmanyengineeringphenomenon,includingtheresponseofsolids,geologicalmaterialsand composites,theassumptionsofanisotropicbehaviormaynotcapturesomesignificantfeaturesof thecontinuumresponse.Theformulationandsolutionofanisotropicproblemsarefarmore difficultandcumbersomethanitsisotropiccounterpart.Inrecentyearstheelastodynamicresponse ofanisotropiccontinuumhasreceivedtheattentionofseveralresearchers.Inparticular, transverslyisotropicandorthotropicmaterials,whichmaynotbedistinguishedfrom…  相似文献   

19.
The nonlinear behavior of an inclined cable subjected to a harmonic excitation is investigated in this paper. The Galerkin’s method is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system subjected to harmonic excitation. The nonlinear systems in the presence of both external and 1:1 internal resonances are transformed to the averaged equations by using the method of averaging. The averaged equations are numerically examined to obtain the steady-state responses and chaotic solutions. Five cascades of period-doubling bifurcations leading to chaotic solutions, 3-periodic solutions leading to chaotic solution, boundary crisis phenomena, as well as the Shilnikov mechanism for chaos, are observed. In order to study the global dynamics of an inclined cable, after determining the averaged equations of motion in a suitable form, a new global perturbation technique developed by Kova?i? and Wiggins is used. This technique provides analytical results for the critical parameter values at which the dynamical system, through the Shilnikov type homoclinic orbits, possesses a Smale horseshoe type of chaos.  相似文献   

20.
Nonlinear waves in a liquid film on a slightly inclined rigid plane are studied. A mathematical model is reduced to a system of two evolutionary equations for the layer thickness and the local fluid mass flow. In addition to viscous forces, gravity, and surface tension, the pressure difference over the layer thickness, induced by the gravity force projection on the normal to the underlying surface, is also taken into account. Spatially periodic solutions developing with time from small initial disturbances into regular nonlinear waves are considered. A spectral representation of the solution, the Galerkin method with respect to the uniform coordinate, and subsequent numerical calculation of the corresponding dynamic system on large time intervals are employed. Different variants in the space of the three governing parameters are calculated and some basic mechanisms of nonlinear dynamics of the two-dimensional waves are detected. The calculation results are compared with the existing experimental data. It is shown that the theoretical conclusions can be used to interpret and predict experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号