首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Car-Parrinello molecular dynamics simulations of a hydroxyl radical in liquid water have been performed. Structural and dynamical properties of the solvated structure have been studied in details. The partial atom-atom radial distribution functions for the hydrated hydroxyl do not show drastic differences with the radial distribution functions for liquid water. The OH is found to be a more active hydrogen bond donor and acceptor than the water molecule, but the accepted hydrogen bonds are much weaker than for the hydroxide OH- ion. The first solvation shell of the OH is less structured than the water's one and contains a considerable fraction of water molecules that are not hydrogen bonded to the hydroxyl. Part of them are found to come closer to the solvated radical than the hydrogen bonded molecules do. The lifetime of the hydrogen bonds accepted by the hydroxyl is found to be shorter than the hydrogen bond lifetime in water. A hydrogen transfer between a water molecule and the OH radical has been observed, though it is a much rarer event than a proton transfer between water and an OH- ion. The velocity autocorrelation power spectrum of the hydroxyl hydrogen shows the properties both of the OH radical in clusters and of the OH- ion in liquid.  相似文献   

2.
Water molecules interact strongly with each other through hydrogen bonds. This efficient intermolecular coupling causes strong delocalization of molecular vibrations in bulk water. We study intermolecular coupling at the air/water interface and find intermolecular coupling 1) to be significantly reduced and 2) to vary strongly for different water molecules at the interface—whereas in bulk water the coupling is homogeneous. For strongly hydrogen‐bonded OH groups, coupling is roughly half of that of bulk water, due to the lower density in the near‐surface region. For weakly hydrogen‐bonded OH groups that absorb around 3500 cm?1, which are assigned to the outermost, yet hydrogen‐bonded OH groups pointing towards the liquid, coupling is further reduced by an additional factor of 2. Remarkably, despite the reduced structural constraints imposed by the interfacial hydrogen‐bond environment, the structural relaxation is slow and the intermolecular coupling of these water molecules is weak.  相似文献   

3.
Rearrangements of the hydrogen bond network of liquid water are believed to involve rapid and concerted hydrogen bond switching events, during which a hydrogen bond donor molecule undergoes large angle molecular reorientation as it exchanges hydrogen bonding partners. To test this picture of hydrogen bond dynamics, we have performed ultrafast 2D IR spectral anisotropy measurements on the OH stretching vibration of HOD in D(2)O to directly track the reorientation of water molecules as they change hydrogen bonding environments. Interpretation of the experimental data is assisted by modeling drawn from molecular dynamics simulations, and we quantify the degree of molecular rotation on changing local hydrogen bonding environment using restricted rotation models. From the inertial 2D anisotropy decay, we find that water molecules initiating from a strained configuration and relaxing to a stable configuration are characterized by a distribution of angles, with an average reorientation half-angle of 10°, implying an average reorientation for a full switch of ≥20°. These results provide evidence that water hydrogen bond network connectivity switches through concerted motions involving large angle molecular reorientation.  相似文献   

4.
Topological analysis of the electron density profiles and the atomic basin integration data for the most energetically favorable (4)C(1) and (1)C(4) conformers of beta-D-glucopyranose, calculated at the B3LYP/6-31+G(d), MPWlPW91/6-311+G(2d,p), and MP2/6-31+G(d) levels, demonstrates that intramolecular hydrogen bonding between adjacent ring OH groups does not occur in glucopyranose, given the need to demonstrate a bond critical point (BCP) of correct (3,-1) topology for such an interaction to be termed a hydrogen bond. On the other hand, pyranose ring OH groups separated by three, rather than just two, carbon atoms are able to form an intramolecular hydrogen bond similar in topological properties and geometry to that found for propane-1,3-diol. Vicinal, equatorial OH groups in the (4)C(1) conformer of glucopyranose are, however, able to form strong bidentate hydrogen bonds with water molecules in a cooperative manner, each water molecule acting simultaneously as both hydrogen bond donor and acceptor, and characterized by (3,-1) bond critical points with increased values for the electron density and the Laplacian of rho(r) compared to an isolated ethane-1,2-diol/water complex.  相似文献   

5.
In this work, the interactions of aragonite and organic matrix in nacre with water are investigated using two-dimensional (2D) Fourier transform infrared (FTIR) spectroscopy. The 2D-FTIR analysis revealed four bands in the OH stretching region at around 3550, 3445, 3272 and 3074 cm(-1). Two additional bands were found at around 3616 and 3282 cm(-1) after deconvolution of the nacre spectrum. The bands at around 3616 and 3550 cm(-1) are assigned to asymmetric and symmetric OH stretching of partially hydrogen bonded water molecules. The bands at around 3445 and 3272 cm(-1) are assigned to asymmetric and symmetric OH stretching of water molecules fully hydrogen bonded with surrounding water molecules. Presence of above bands in the nacre spectrum suggests that water, in form of clusters, is present in protein matrix and aragonite pores. Water may also hydrogen bond with the organic matrix. The bands observed at 3282 and 3074 cm(-1) are assigned to asymmetric and symmetric OH stretching of water molecules, chemisorbed on surfaces of aragonite platelets. Polarization experiments suggest that H-O-H plane of water molecules is along to c-axis of aragonite platelets.  相似文献   

6.
In aqueous acetone solutions, the strong bathochromic shifts observed on the OH and CO stretch infrared (IR) bands are due to hydrogen bonds between these groups. These shifts were evaluated by factor analysis (FA) that separated the band components from which five water and five acetone principal factors were retrieved [J. Chem. Phys. 119, 5632 (2003)]. However, these factors were abstract making them difficult to interpret. To render them real an organization model of molecules is here developed whose abundances are compared to the experimental ones. The model considers that the molecules are randomly organized limited by the hydrogen bond network formed between the water hydrogen atoms and the acetone or water oxygen atoms, indifferently. Because the oxygen of water has two covalent hydrogen atoms which are hydrogen-bonded and may receive up to two hydrogen atoms from neighbor molecules hydrogen-bonded to it, three types of water molecules are found: OH2, OH3, and OH4 (covalent and hydrogen bonds). In the OH stretch region these molecules generate three absorption regimes composed of nu3, nu1, and their satellites. The strength of the H-bond given increases with the number of H-bonds accepted by the oxygen atom of the water H-bond donor, producing nine water situations. Since FA cannot separate those species that evolve concomitantly the nine water situations are regrouped into five factors, the abundance of which compared exactly to that retrieved by FA. From the factors' real spectra the OH stretch absorption are simulated to, respectively, give for the nu3 and nu1 components the mean values for OH2, 3608, 3508; OH3, 3473, 3282 and OH4, 3391, 3223 cm(-1). The mean separations from the gas-phase position which are respectively about 150, 330, and 400 cm(-1) are related to the vacancy of the oxygen electron doublets: two, one, and zero, respectively. No acetone hydrate that sequesters water molecules is formed. Similarly, acetone produces ten species, two of which evolve concomitantly. Spectral similarities further reduce these to five principal IR factors, the abundance of which compared adequately to the experimental results obtained from FA. The band assignment of the five-acetone spectra is given.  相似文献   

7.
Using the method of ab initio molecular dynamics, we examine the structural fluctuation and the low-frequency dynamics of beta-ribofuranose puckering in aqueous solution. Our analysis suggests that the distance between the anomeric and hydroxymethyl oxygens is a simple relevant geometrical parameter that dynamically correlates with the phase angle in the north region. The time-frequency analysis using the Hilbert-Huang transform also confirms the correlation, and most of the instantaneous frequencies for the phase angle and the above distance are found to be concentrated on the region below about 100 cm(-1). Our analysis of ab initio molecular dynamics trajectories suggests that the molecular origin of the hydration effects on the low-frequency dynamics of beta-ribofuranose puckering is closely related to this correlation and thus primarily attributed to the relatively local interactions among the anomeric and hydroxymethyl oxygens and the surrounding water molecules near them. Additionally, we discuss the difference in the low-frequency dynamics of beta-ribofuranose puckering between two hydroxymethyl rotamers.  相似文献   

8.
Carbohydrates are ubiquitous biomolecules in nature. The vast majority of their biomolecular activity takes place in aqueous environments. Molecular reactivity and functionality are, therefore, often strongly influenced by not only interactions with equivalent counterparts, but also with the surrounding water molecules. Glycoaldehyde (Gly) represents a prototypical system to identify the relevant interactions and the balance that governs them. Here we present a broadband rotational‐spectroscopy study on the stepwise hydration of the Gly dimer with up to three water molecules. We reveal the preferred hydrogen‐bond networks formed when water molecules sequentially bond to the sugar dimer. We observe that the dimer structure and the hydrogen‐bond networks at play remarkably change upon the addition of just a single water molecule to the dimer. Further addition of water molecules does not significantly alter the observed hydrogen‐bond topologies.  相似文献   

9.
Herein, addition reaction occurred between glycidol and partially hydrolyzed Ti4+ complexes provides a opportunity to obtain dry anatase nanopowder with high redispersity in water. This property is considered to be originated from the two OH groups located in the two ends of glycidol resulted chlorinated propandiol molecules. In aqueous solution, the two OH groups are respectively connected with particle surface and external free water by the formation of hydrogen bonds, resulting in high water redispersity of nanoparticles. Due to the much less amount of chlorinated propandiol molecules than adsorbed molecule water on particle, the wide space between organic molecules facilitates the mutual physical surface touch of individual particles to form hydrogen bond between them. A novel property is then obtained for surface modified titania nanoparticles, which is the gelation of redispered nanoparticles in aqueous solution.  相似文献   

10.
By employing the nonlinear optical, interface selective experiment of sum frequency spectroscopy together with independent ab initio and density functional theory calculations, we determine the functional species of a corundum (001) surface: doubly coordinated OH groups which differ in their bond tilt angles. The interaction of the functional species with the adjacent water molecules is also observed. In a large pH range around the point of zero charge, the interaction is not controlled electrostatically but by hydrogen bonding. The functional species' tilt angles are crucial parameters, determining whether the species act as hydrogen bond donors or acceptors.  相似文献   

11.
We present a new and alternative interpretation of the structure of the IR vibrational mode (nu(OH) band) of pure water. The re-interpretation is based on the influence of the cooperative hydrogen bonding arising from a network of hydrogen bonds in the liquid. The nu(OH) band has six components that are dominated by differences in their O-H bond lengths but deviate from thermodynamically average values due to interactions with the hydrogen bond network. The physical origin of the structure in the nu(OH) band is directly related to the O-H bond length, and variations in this bond length are caused by the influence of the surrounding hydrogen-bonded network of water molecules.  相似文献   

12.
13.
Various hydrogen-bonded complexes of methanol with different proton accepting and proton donating molecules containing Cl, F, NH(2), OH, OR, and COOH functional groups have been modeled using DFT with hybrid B3LYP and M05-2X functionals. The latter functional was found to provide more accurate estimates of the structural and thermodynamic parameters of the complexes of halides, amines, and alcohols. The characteristics of these complexes are influenced not only by the principle hydrogen bond of the methanol OH with the proton acceptor heteroatom, but also by additional hydrogen bonds of a C-H moiety with methanol oxygen as a proton acceptor. The contribution of the former hydrogen bond in the total binding enthalpy increases in the order chlorides < fluorides < alcohols < amines, while the contribution of the second type of hydrogen bond increases in the reverse order. A general correlation was found between the binding enthalpy of the complex and the electrostatic potential at the hydrogen center participating in the formation of the hydrogen bond. The calculated binding enthalpies of different complexes were used to clarify which functional groups can potentially form a hydrogen bond to the 2'-OH hydroxyl group in ribose, which is strong enough to block it from participation in the intramolecular catalytic activation of the peptide bond synthesis. Such blocking could result in inhibition of the protein biosynthesis in the living cell if the corresponding group is delivered as a part of a drug molecule in the vicinity of the active site in the ribosome. According to our results, such activity can be accomplished by secondary or tertiary amines, alkoxy groups, deprotonated carboxyl groups, and aliphatic fluorides, but not by the other modeled functional groups.  相似文献   

14.
An ab initio quantum mechanical charge field molecular dynamics simulation was carried out for one methanol molecule in water to analyze the structure and dynamics of hydrophobic and hydrophilic groups. It is found that water molecules around the methyl group form a cage-like structure whereas the hydroxyl group acts as both hydrogen bond donor and acceptor, thus forming several hydrogen bonds with water molecules. The dynamic analyses correlate well with the structural data, evaluated by means of radial distribution functions, angular distribution functions, and coordination number distributions. The overall ligand mean residence time, τ identifies the methanol molecule as structure maker. The relative dynamics data of hydrogen bonds between hydroxyl of methanol and water molecules prove the existence of both strong and weak hydrogen bonds. The results obtained from the simulation are in excellent agreement with the experimental results for dilute solution of CH(3)OH in water. The overall hydration shell of methanol consists in average of 18 water molecules out of which three are hydrogen bonded.  相似文献   

15.
16.
The intramolecular hydrogen bond (intra-HB) is one of the best-known examples of non-covalent interactions in molecules. Among the different types of intramolecular hydrogen bonding, the NH⋅⋅⋅O hydrogen bond in amino-alcohols and amino-ethers is one of the weakest. In contrast to the strong OH⋅⋅⋅N intramolecular hydrogen bond, the strength of the NH⋅⋅⋅O bond can hardly be measured with conventional spectroscopic methods, even for simple amino-alcohols, since the band belonging to the NH⋅⋅⋅O conformer merges with the free OH band. In this work, we developed a combination of G4 calculations, and a method based on experimental vaporization enthalpies to determine the NH⋅⋅⋅O hydrogen bonding strength. The archetypal compounds for this study are 2-amino-1-ethanol and 3-amino-1-propanol as well as their respective methoxy analogs. Based on these molecules, different series were studied to investigate various factors influencing NH⋅⋅⋅O intra-HB strength. In the first series, the influence of alkylation near the hydroxy or methoxy group and the amino group in sterically hindered aminoalcohols was examined. In the second series, the influence of alkylation of the amino-group was investigated. In the third series, the effect of extending the alkyl chain between functional groups was studied.  相似文献   

17.
18.
Ab initio density functional theory molecular dynamics simulations of the solvated states of the hydroxyl radical and hydroxide ion are performed using the Becke-Lee-Yang-Parr (BLYP) exchange-correlation functional (Becke, A. D. Phys. Rev. A 1988, 38, 3098. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785). The structures of the solvation shells of the two species are examined. It is found that the OH radical forms a relatively well-defined solvation complex with four neighboring water molecules. Three of these molecules are hydrogen bonded to the OH, while the fourth is hemibonded via a three-electron two-centered bond between the oxygen atoms of the OH and water. The activity and the diffusion mechanism of the OH radical in water is discussed in comparison with the OH- ion. Although the results are partially influenced by the tendency of the BLYP density functional to overestimate hemibonded structure, the present simulations suggest that the widely accepted picture of rapid diffusion of OH radical in water through hydrogen exchange reaction may need to be reconsidered.  相似文献   

19.
The interaction strength of sodium ions (Na(+)) with cellulose is investigated from first principles for varying degrees of water content. We find that the interaction of water molecules and Na(+) can be studied independently at the various OH groups in cellulose which we categorize as two different types. In the absence of water, Na(+) forms strong ionic bonds with the OH groups of cellulose. When water molecules are anchored to the OH groups via hydrogen bonds, Na(+) can eventually no longer bind to the OH groups, but will instead interact with the oxygen atoms of the water molecules. Due to the rather weak attachment of the latter to the OH groups, Na(+) becomes effectively more mobile in the fully hydrated cellulose framework. The present study thus represents a significant step toward a first-principles understanding of the experimentally observed dependence of ionic conductivity on the level of hydration in cellulose network.  相似文献   

20.
Several conformations of the solvated glycine-based polypeptides were investigated using molecular dynamics simulations. Some properties of water in the neighboring space around these molecules were investigated. It was found that water forms a well-defined layer-the first solvation shell-around the peptide molecule, and thickness of this layer is independent of the peptide structure and is equal to approximately 0.28 nm. Within this layer, water molecules show marked orientations relative to a peptide surface. Using the two-particle contribution to entropy as a measure of structural ordering of water, we found that the first solvation shell contributes 95% or more to the total water ordering around the peptide molecule. In investigating the dynamic properties of water, diffusion coefficients and lifetime of the hydrogen bond, clear differences between solvation layer and the bulk water were observed. It was found that the translational diffusion coefficient, D(T), decreases by 30% or more compared to bulk water; also, the lifetime of the water-water hydrogen bond clearly increases. The rotational diffusion coefficient, however, decreases only slightly, no more than approximately 10%. These differences correspond to the slightly higher energy of the hydrogen bond, and to its slightly distorted geometry. Analyzing the translational dynamics of water in the vicinity of the peptide molecule, it was deduced that the structure of the first solvation shell becomes more rigid than the structure of the bulk water. Investigation of a "pure hydrophobic" form of the polypeptide shows that the structure and the properties of water within the solvation shell are predominantly determined by the hydrophobic effect. The specific interactions between water molecules and various charge groups of the peptide molecule modifies this effect only slightly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号