首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the development principles of laser-based large detection area speed measurement systems are considered. The optical schemes of the single light barrier–single photodetector, double light barriers–single photodetector and double light barriers–double photodetectors are developed and investigated. Advantages and disadvantages of these schemes are explained. Important proposals are given for the development of the optical schemes. A double light barriers–double photodetectors system measuring the bullet speed is developed. Equations describing the errors occurring in the system are derived.  相似文献   

2.
We present a Bayesian estimation analysis for a selective trace gas detection technique with species separation provided by differential diffusion. The proposed method collects a sample containing multiple gas species into a common volume, and then allows the mixed cloud to diffuse across a linear array of optical absorption detectors using, for example, high-finesse Fabry–Perot cavities. The estimation procedure assumes that all gas parameters (e.g., diffusion constants, optical cross sections) are known except for the number population of each species, which are determined from the time-of-flight absorption profiles in each detector.  相似文献   

3.
用于气体痕量检测的中红外空心布拉格光纤   总被引:1,自引:0,他引:1       下载免费PDF全文
布拉格光纤是一种一维光子晶体带隙导引光纤.针对布拉格光纤在气体痕量检测领域的应用,设计了传输波段中心波长位于中红外波段的半导体玻璃/有机聚合物基空心布拉格光纤.通过预制棒熔拉法,制备出了中红外空心布拉格光纤的样品.传输谱和弯曲特性测试表明布拉格光纤样品具有两个明显的传输波段,体现了带隙导光的特征.低阶传输波段的中心波长为4.4μm.  相似文献   

4.
2 O), carbon dioxide (CO2), and sulfur dioxide (SO2). Real-time detection of CO, N2O, and CO2 was performed in open air over a path length of 5 to 18 m. The feasibility of DFG spectroscopic measurement of the 13C/12C and 18O/17O/16O isotopic ratios in atmospheric carbon dioxide was also investigated. We report what to our knowledge is the first simultaneous spectroscopic measurement of all three isotopes of oxygen in ambient CO2. Received: 14 August 1997/Revised version: 3 November 1997  相似文献   

5.
Tunable narrowband mid-infrared radiation from 3.25 to 4.4 μm is generated by a compact fiber-coupled, difference-frequency-based spectrosopic source. A 20-mW external cavity diode laser (with a tuning range from 814 to 870 nm) and a 50-mW distributed-Bragg-reflector diode-laser-seeded ytterbium-doped fiber amplifier operating at 1083 nm are difference-frequency mixed in a multi-grating, temperature-controlled periodically poled LiNbO3 crystal. A conversion efficiency of 0.44 mW/(W2 cm) (corresponding to a power of ≈3 μW at 3.3 μm) represents the highest conversion efficiency reported for a portable device. Performance characteristics of such a sensor and its application to spectroscopic detection of CO2, N2O, H2CO, HCl, NO2, and CH4 will be reported in this work. Received: 14 May / Revised version: 24 June 1999 / Published online: 30 September 1999  相似文献   

6.
Statistical mechanics is a powerful method for understanding equilibrium thermodynamics. An equivalent theoretical framework for nonequilibrium systems has remained elusive. The thermodynamic forces driving the system away from equilibrium introduce energy that must be dissipated if nonequilibrium steady states are to be obtained. Historically, further terms were introduced, collectively called a thermostat, whose original application was to generate constant-temperature equilibrium ensembles. This review surveys kinetic models coupled with time-reversible deterministic thermostats for the modeling of large systems composed both by inert matter particles and living entities. The introduction of deterministic thermostats allows to model the onset of nonequilibrium stationary states that are typical of most real-world complex systems. The first part of the paper is focused on a general presentation of the main physical and mathematical definitions and tools: nonequilibrium phenomena, Gauss least constraint principle and Gaussian thermostats. The second part provides a review of a variety of thermostatted mathematical models in physics and life sciences, including Kac, Boltzmann, Jager–Segel and the thermostatted (continuous and discrete) kinetic for active particles models. Applications refer to semiconductor devices, nanosciences, biological phenomena, vehicular traffic, social and economics systems, crowds and swarms dynamics.  相似文献   

7.
This special issue of Applied Physics B – Lasers and Optics attempts to document the current status and trends of environmental trace gas detection through a collection of 32 invited papers motivated in part by the need for and importance of a detailed understanding of our environment. Although numerous traditional optical methods, gas chromatography, and mass spectrometry have served us extremely well in atmospheric and environmental trace gas detection, promising new sensing and precise measurement techniques based on laser spectroscopy have emerged and been successfully used in numerous applications. The concept and timing of this special issue has been stimulated to some extent by recent exciting developments of several novel technologies, such as diode and fiber lasers for the optical communications industry, diode-pumped solid-state lasers, and novel bulk and waveguide infrared nonlinear materials. These can be applied to the ultra-sensitive, highly selective detection and real-time analysis of a large number of trace gas species by means of absorption spectroscopy in the mid-infrared fingerprint region, which contains virtually all the fundamental vibrational modes of molecules. Reduction of cost and complexity makes such spectroscopic sources more universally available and user friendly to both established and new fields that include air quality, atmospheric chemistry, industrial, traffic, and rural emissions, chemical analysis and process control, and medical applications.This issue, consisting of two parts, chronicles some of the most significant and representative current research trends. It is hoped that this issue will inspire new directions to both specialists and newcomers in which to drive this exciting field and envision future applications of environmental sensing.Part I: Spectroscopic air monitoring techniques and instrumentation
•  Tunable laser spectroscopy with near-IR diode lasers, lead salt diode lasers, and parametric frequency conversion sources
Part II: Applications of laser- and non-laser-based spectroscopic techniques
•  Differential absorption lidar (DIAL) and spectroscopy (DOAS) for atmospheric research
•  Laser photoacoustic spectroscopy
•  Fourier transform infrared spectroscopy
I would like to express my gratitude to excellent authors and constructive reviewers from around the world for making this issue a reality over a mere six-month period. My special thanks also go to Prof. F. Träger, Editor-in-Chief of Applied Physics B – Lasers and Optics, for providing me with the opportunity for this special issue, and to Victoria Schutter (Rice University), Gabriele Kuppstadt-Brand (University of Kassel), and Marlene Hillen (Springer-Verlag) for doing a superb job in assembling this issue.  相似文献   

8.
9.
张锐  赵学玒  赵迎  王喆  汪曣 《物理学报》2014,63(14):140701-140701
研究了激光器扫描步长和线宽两种特性对可调谐半导体激光吸收光谱检测系统的影响,理论上推导出激光与气体吸收谱线的作用原理,分析出扫描信号(锯齿波)的台阶间隔和高度影响激光器中心波长的扫描原理.设定了仿真参数,仿真出锯齿波台阶数与最大扫描误差关系曲线,得出扫描信号的一个周期内具有4000个台阶时,半高全宽(FWHM)大于0.01 cm-1,误差小于1‰;仿真出激光器线宽与最大幅值、线宽误差关系曲线,给出线宽误差最大为1%,0.5%时激光器线宽对应的最小FWHM.在温度系数n取0.9,大气展宽系数γair取0.005的条件下,给出温度T,压强P与FWHM关系图,推出了适用的压强与温度范围.为指导选取激光器与气体吸收谱线、提高系统检测限提供了相关理论依据.  相似文献   

10.
Joly  L.  Zéninari  V.  Decarpenterie  T.  Cousin  J.  Grouiez  B.  Mammez  D.  Durry  G.  Carras  M.  Marcadet  X.  Parvitte  B. 《Laser Physics》2011,21(4):805-812
Mid infra-red absorption spectrometry based on continuous-wave distributed feedback (DFB) quantum cascade laser (QCL) is more and more widely used for trace gas detection and pollution monitoring. The main advantages of this technique are high sensitivity, high selectivity and a potential for extreme compactness. Various examples of trace gas detection for atmospheric detection will be presented in this paper. Commercial QCLs available on the shelves were first implemented. A cryogenic QCL emitting at 6.7 μm was used to demonstrate the detection of water vapor and its isotopes. A room-temperature QCL was then used to simultaneously detect methane and nitrous oxide at 7.9 μm. Recently, we have developed a room-temperature top grating DFB QCL designed around 4.5 μm for the demonstration of N2O detection in the ppb range. Atmospheric applications of these spectrometers will be presented. The improvements of QCL performances make it now possible to develop instruments that are more and more compact and therefore compatible with in situ applications.  相似文献   

11.
Tröger  W. 《Hyperfine Interactions》1999,120(1-8):117-128
The nuclear quadrupole interaction at metal sites in macromolecules monitored by time differential perturbed angular correlation provides information on the local environment of metal ions residing at these sites. This information is obtained in the ultra-trace regime and is, therefore, extremely valuable for research on reaction pathways of enzymatic heavy metal detoxification, for the development of radiopharmaceuticals, for investigations into protein architectures on surfaces, and for environmental research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
This topical issue collects contributions of recent achievements and scientific progress related to the connection between nonlinear dynamics and life sciences. The individual papers focus on different questions of present day interest in both theoretical and applied aspects of nonlinear dynamics in applied to life sciences.  相似文献   

13.
We present and characterize a two-dimensional (2D) imaging spectrometer based on a virtually imaged phased array (VIPA) disperser for rapid, high-resolution molecular detection using mid-infrared (MIR) frequency combs at 3.1 and 3.8?μm. We demonstrate detection of CH4 at 3.1?μm with >3750 resolution elements spanning >80 nm with ~600 MHz resolution in a <10 μs acquisition time. In addition to broadband detection, we also demonstrate rapid, time-resolved single-image detection by capturing dynamic concentration changes of CH4 at a rate of ~375 frames per second. Changes in absorption above the noise floor of 5×10-4 are readily detected on the millisecond time scale, leading to important future applications such as real-time monitoring of trace gas concentrations and detection of reactive intermediates.  相似文献   

14.
Resonant photoacoustic detection of trace gas with DFB diode laser   总被引:1,自引:0,他引:1  
A resonant photoacoustic detection system based on a low-power distributed feedback diode laser is developed. This sensor has been applied to the detection of acetylene (C2H2) using a specifically designed photoacoustic cell operating on its second longitudinal mode. The minimum detectable limit of about 10 parts-per-million volume (SNR=1) is achieved with an average laser power of 3.5 mW at atmospheric pressure, and an integration time constant of 3 ms; thus, the minimum detectable absorption coefficient normalised by power and bandwidth is 4.0×10−8 W cm−1/√Hz. The optimum operating pressure buffered with N2 is also investigated. The realisation of our system is described and experimental results are compared with different modulation techniques and other results reported in the literature. A number of issues arising from the conventional use of mechanical chopping of the beam can be effectively suppressed in wavelength modulation PA spectroscopy (WM-PAS) and second harmonic detection.  相似文献   

15.
3 is reported. Using an external cavity diode laser, tunable from 795 to 825 nm, and a cw diode-pumped Nd:YAG ring laser at 1064 nm, we produced narrowband mid-ir laser light between 3.16 and 3.67 μm. This broad tuning range of 440 cm-1 can be critically phase-matched by changing the external crystal angle within a range of only 0.4°. Even for a fixed crystal angle broadband phase-matching over 230 cm-1 was achieved. No realignment was required when tuning the laser over the whole wavelength range, which enabled the use of a compact 36-m multipass cell as gas chamber. The conversion efficiency could be improved by almost a factor of 3 by applying noncollinear instead of collinear phase-matching, resulting in 30 nW of idler power with good beam quality. Spectra of methane were recorded in laboratory air, which demonstrate the rapid and continuous broad tunability at high sensitivity, enabling sub-ppm detection. Finally, wavelength modulation spectroscopy at high resolution was applied as a promising tool for further inproving the performance of this laser spectrometer. Received: 16 March 1998/Revised version: 1 July 1998  相似文献   

16.
The main characteristics that a sensor must possess for trace gas detection and pollution monitoring are high sensitivity, high selectivity and the capability to perform in situ measurements. The photacoustic Helmholtz sensor developed in Reims, used in conjunction with powerful Quantum Cascade Lasers (QCLs), fulfils all these requirements. The best cell response is # 1200 V W−1 cm and the corresponding ultimate sensitivity is j 3.3 × 10−10 W cm−11 Hz−11/2. This efficient sensor is used with mid-infrared QCLs from Alpes Lasers to reach the strong fundamental absorption bands of some atmospheric gases. A first cryogenic QCL emitting at 7.9 μm demonstrates the detection of methane in air with a detection limit of 3 ppb. A detection limit of 20 ppb of NO in air is demonstrated using another cryogenic QCL emitting in the 5.4 μm region. Real in-situ measurements can be achieved only with room-temperature QCLs. A room-temperature QCL emitting in the 7.9 μm region demonstrates the simultaneous detection of methane and nitrous oxide in air (17 and 7 ppb detection limit, respectively). All these reliable measurements allow the estimated detection limit for various atmospheric gases using quantum cascade lasers to be obtained. Each gas absorbing in the infrared may be detected at a detection limit in the ppb or low-ppb range.  相似文献   

17.
A compact open-path optical ammonia detector is developed. A tunable external-cavity diode laser operating at 1.5 μm is used to probe absorptions of ammonia via the cavity-enhanced absorption (CEA) technique. The detector is tested in a climate chamber. The sensitivity and linearity of this system are studied for ammonia and water at atmospheric pressure. A cluster of closely spaced rovibrational overtone and combination band transitions, observed as one broad absorption feature, is used for the detection of ammonia. On these molecular transitions a detection limit of 100 ppb (1 s) is determined. The ammonia measurements are calibrated independently with a chemiluminescence monitor. Compared to other optical open-path detection methods in the 1–2 μm region, the present result shows an improved sensitivity for contactless ammonia detection by over one order of magnitude. Using the same set-up, a detection limit of 100 ppm (1 s) is determined for the detection of water at atmospheric pressure. Received: 19 January 2000 / Revised version: 6 March 2000 / Published online: 7 June 2000  相似文献   

18.
由于工业监控和环境检测的需要,甲烷气体检测日益得到人们的关注。研究了基于中红外分布反馈量子级联激光器(DFB-QCL)的光声光谱技术,并应用于痕量甲烷的检测。自主研发的DFB-QCL室温工作时的激射波长在7.6μm附近,覆盖了甲烷的特征吸收谱线1 316.83cm-1。待测甲烷气体充入亥姆霍兹光声谐振腔中,DFB-QCL的工作频率为234Hz、室温脉冲工作时峰值功率为80mW。中红外光经过甲烷吸收后,产生的声波信号经麦克风检测,由锁相放大器对信号进行采集并输入计算机进行处理。按信噪比为1计算,得到甲烷的探测极限为189nmol.mol-1。  相似文献   

19.
Development of methods for instrumental neutron activation analysis (INAA) and their applications in the life sciences are reviewed. Emphasis is placed on epithermal activation with reactor neutrons (ENAA), and the advantages of this technique in analysis of environmental objects are shown. The results of applied INAA studies in the field of the life sciences carried out at the world’s leading nuclear centers are reported. Experience in employing a radioanalytical complex at the IBR-2 reactor (Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna) for such studies is summarized.  相似文献   

20.
正Optical methods for life sciences is a very comprehensive subject.Especially in this era,scientific discoveries depend on more and more interdisciplinary cooperation.For example,the discovery of fluorescent proteins and probes helps optical engineers achieve higher contrast and localization images for biological samples.Optical diffraction limitation was elim-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号